阿凡达(类欧几里得算法)

一、题目

在这里插入图片描述

二、解法

由于 n n n很大,但是操作数很小,且一开始没有初值,很容易想到动态开点,时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)

剩下的问题是如何计算一个修改段内的和,注意到 ( i − l + 1 ) ⋅ x % y = ( i − l + 1 ) ⋅ x + ( i − l + 1 ) ⋅ x y (i-l+1)\cdot x\% y=(i-l+1)\cdot x+\frac{(i-l+1)\cdot x}{y} (il+1)x%y=(il+1)x+y(il+1)x(本题解中的除号均为整除),前者等差数列,后者用经典的类欧几里得算法求和,总时间复杂度 O ( log ⁡ n ) O(\log n) O(logn),下面详细讲一下这个算法。

类欧几里得算法一般用于解决此类问题: f ( a , b , c , n ) = ∑ i = 0 n i a + b c f(a,b,c,n)=\sum_{i=0}^n \frac{ia+b}{c} f(a,b,c,n)=i=0ncia+b,给定 a , b , c , n a,b,c,n a,b,c,n f f f,下面给出算法过程及推导。

a ≥ c   o r   b ≥ c a\geq c\space or\space b\geq c ac or bc时, f ( a , b , c , n ) = f ( a % c , b % c , c , n ) + a c n ( n + 1 ) 2 + ( n + 1 ) b c f(a,b,c,n)=f(a\%c,b\%c,c,n)+\frac{a}{c}\frac{n(n+1)}{2}+(n+1)\frac{b}{c} f(a,b,c,n)=f(a%c,b%c,c,n)+ca2n(n+1)+(n+1)cb

a , b ≤ c a,b\leq c a,bc,设 m = a n + b c m=\frac{an+b}{c} m=can+b,我们开始推式子:
f ( a , b , c , n ) = ∑ i = 0 n ∑ j = 0 m − 1 [ j < i a + b c ] f(a,b,c,n)=\sum_{i=0}^n\sum_{j=0}^{m-1}[j<\frac{ia+b}{c}] f(a,b,c,n)=i=0nj=0m1[j<cia+b] = ∑ j = 0 m − 1 ∑ i = 0 n [ i > c j − b + c − 1 a ] =\sum_{j=0}^{m-1}\sum_{i=0}^n[i>\frac{cj-b+c-1}{a}] =j=0m1i=0n[i>acjb+c1]上面那一步怎么来的呢?我们对括号内的内容做推导:
j < a i + b c j<\frac{ai+b}{c} j<cai+b j ≤ a i + b c − 1 j\leq \frac{ai+b}{c}-1 jcai+b1 c j ≤ a i + b − c cj\leq ai+b-c cjai+bc c j < a i + b − c + 1 cj<ai+b-c+1 cj<ai+bc+1 i > c j − b + c − 1 a i>\frac{cj-b+c-1}{a} i>acjb+c1然后就推出来了,我们继续推导:
= ∑ j = 0 m − 1 n − c j − b + c − 1 a =\sum_{j=0}^{m-1}n-\frac{cj-b+c-1}{a} =j=0m1nacjb+c1 = n m − f ( c , c − b − 1 , a , m − 1 ) =nm-f(c,c-b-1,a,m-1) =nmf(c,cb1,a,m1)发现上述算法过程类似于辗转相除法,故时间复杂度为 log ⁡ \log log

咕咕咕
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值