[BZOJ 4173]数学

一、题目

在这里插入图片描述

二 、解法

又到了欢乐推式子时间,先推那个判断式(本文所有除法均为整除):
m % k + n % k ≥ k m\%k+n\%k\geq k m%k+n%kk m − m k k + n − n k k ≥ k m-\frac{m}{k}k+n-\frac{n}{k}k\geq k mkmk+nknkk n + m k − m k − n k ≥ 1 \frac{n+m}{k}-\frac{m}{k}-\frac{n}{k}\geq1 kn+mkmkn1由于 0 ≤ n + m k − m k − n k ≤ 1 0\leq\frac{n+m}{k}-\frac{m}{k}-\frac{n}{k}\leq1 0kn+mkmkn1,所以可以直接把上面的值当成判断式来用,也就是说,我们现在要求这东西:
ϕ ( n ) ϕ ( m ) ∑ k = 1 n + m ( n + m k − m k − n k ) ϕ ( k ) \phi(n)\phi(m)\sum_{k=1}^{n+m}(\frac{n+m}{k}-\frac{m}{k}-\frac{n}{k})\phi(k) ϕ(n)ϕ(m)k=1n+m(kn+mkmkn)ϕ(k)可以把上面的问题分解成三个差不多的子问题,我们继续推式子:
∑ k = 1 n n k ϕ ( k ) = ∑ k = 1 n ∑ d ∣ k ϕ ( k ) = ∑ k = 1 n k \sum_{k=1}^n\frac{n}{k}\phi(k)=\sum_{k=1}^n\sum_{d|k}\phi(k)=\sum_{k=1}^n k k=1nknϕ(k)=k=1ndkϕ(k)=k=1nk推出来了一个优美的求和,所以原式 = n m =nm =nm(三个求和再推下就完了),最后的答案为 ϕ ( n ) ϕ ( m ) n m \phi(n)\phi(m)nm ϕ(n)ϕ(m)nm。都推到这一步了,代码就不给了吧qwq。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值