一、题目
二、解法
先离散化时间,设 p r e [ i ] [ j ] pre[i][j] pre[i][j]为时间 [ 0 , i ] [0,i] [0,i]中 A A A站选了 j j j个活动, B B B站最多能选的活动数, s u f [ i ] [ j ] suf[i][j] suf[i][j]为时间 [ i , t ] [i,t] [i,t]中的 . . . . .... ....,定义类似,转移分为两种情况,我们枚举前一个点,把这个区间里的活动给 A A A站 / B /B /B站,时间复杂度 O ( n 3 ) O(n^3) O(n3)。
第一个问题就解决了,第二个问题枚举包含当前活动的区间 [ l , r ] [l,r] [l,r](因为有可能有活动经过当前活动那样的话就考虑不到)把他们都给 A A A站举行,枚举 [ 1 , l ] [1,l] [1,l]中的活动数 x x x, [ r , t ] [r,t] [r,t]的活动数 y y y也给 A A A站矩形,所以答案是:
min ( x + c n t [ l ] [ r ] + y , p r e [ l