[NOI2011]NOI 嘉年华

这篇博客详细介绍了NOI2011竞赛中的一道题目,涉及活动安排问题的解法。通过离散化时间,预处理前缀和与后缀和,并利用单调性优化,将复杂度从O(n^5)降低到O(n^3),最终给出实现细节和代码片段。
摘要由CSDN通过智能技术生成

一、题目

点此看题

二、解法

先离散化时间,设 p r e [ i ] [ j ] pre[i][j] pre[i][j]为时间 [ 0 , i ] [0,i] [0,i] A A A站选了 j j j个活动, B B B站最多能选的活动数, s u f [ i ] [ j ] suf[i][j] suf[i][j]为时间 [ i , t ] [i,t] [i,t]中的 . . . . .... ....,定义类似,转移分为两种情况,我们枚举前一个点,把这个区间里的活动给 A A A / B /B /B站,时间复杂度 O ( n 3 ) O(n^3) O(n3)

第一个问题就解决了,第二个问题枚举包含当前活动的区间 [ l , r ] [l,r] [l,r](因为有可能有活动经过当前活动那样的话就考虑不到)把他们都给 A A A站举行,枚举 [ 1 , l ] [1,l] [1,l]中的活动数 x x x [ r , t ] [r,t] [r,t]的活动数 y y y也给 A A A站矩形,所以答案是:
min ⁡ ( x + c n t [ l ] [ r ] + y , p r e [ l

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值