完全平方数

一、题目

点此看题

二、解法

考虑二分答案,问题在于求出nn以内的所有满足条件数的个数。

从容斥方面考虑,个数 == 00个质数乘积平方的倍数个数 - 11个质数乘积平方的倍数 ++ 22个质数成绩平方的倍数 - 33个质数乘积平方的倍数 ............

可以用莫比乌斯函数优化这个过程,形式化地表达,个数为:
i=1inμ(i)ni2\sum_{i=1}^{i\leq\sqrt n} \mu(i)\frac{n}{i^2}时间复杂度O(lognn)O(\log n\sqrt n),贴个代码qwqqwq

#include <cstdio>
#define int long long
const int M = 50005;
int read()
{
    int x=0,flag=1;
    char c;
    while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
    while(c>='0' && c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
    return x*flag;
}
int T,k,cnt,vis[M],p[M],mu[M];
void init(int n)
{
    mu[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!vis[i])
        {
            mu[i]=-1;
            p[++cnt]=i;
        }
        for(int j=1;j<=cnt && i*p[j]<=n;j++)
        {
            vis[i*p[j]]=1;
            if(i%p[j]==0) break;
            mu[i*p[j]]=-mu[i];
        }
    }
}
int check(int x)
{
    int res=0;
    for(int i=1;i*i<=x;i++)
        res+=mu[i]*(x/(i*i));
    return res;
}
signed main()
{
    T=read();
    init(5e4);
    while(T--)
    {
        k=read();
        int l=1,r=k<<1,ans=1;
        while(l<=r)
        {
            int mid=(l+r)>>1;
            if(check(mid)>=k) ans=mid,r=mid-1;
            else l=mid+1;
        }
        printf("%lld\n",ans);
    }
}
发布了373 篇原创文章 · 获赞 14 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览