一、题目
题目描述
给定一个有点权的有根树,每次选择一个叶子节点,把它到根的路径全部算贡献,同一个点不重复贡献,问 k k k此选择之后的最大贡献是多少,根节点为 1 1 1
数据范围
n ≤ 200000 , 1 ≤ v a l u e ≤ 2 31 − 1 n\leq200000,1\leq value\le2^{31}-1 n≤200000,1≤value≤231−1
二、解法
对原树树链剖分,只不过我们是把一个点到子树内叶子的最大权值和当作判断轻重的条件,这样原树被我们划分成了若干条链,我们选出其中最大的 k k k条求和就是答案。
此算法正确的正确性也很好理解,当一个点的重链被选走后,在从轻链处选就不能算这个点的贡献,我们划分也正好划分成了不重合的若干条链,时间复杂度 O ( n ) O(n) O(n),贴个代码 q w q qwq qwq。
#include <cstdio>
#include <iostream>
#include <queue>
using namespace std;
#define int long long
const int M = 200005;
int read()
{
int x=0,flag=1;char c;
while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
while(c>='0' && c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*flag;
}
int n,m,tot,ans,f[M],a[M],dep[M],fa[M],son[M],top[M];
priority_queue<int> q;
struct edge
{
int v,next;
edge(int V=0,int N=0) : v(V) , next(N) {}
}e[2*M];
void dfs(int u)
{
dep[u]=a[u];
for(int i=f[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==fa[u]) continue;
fa[v]=u;
dfs(v);
dep[u]=max(dep[u],dep[v]+a[u]);
if(dep[v]>dep[son[u]]) son[u]=v;
}
}
void dfs(int u,int tp)
{
top[u]=tp;
if(son[u]) dfs(son[u],tp);
for(int i=f[u];i;i=e[i].next)
if(e[i].v^fa[u] && e[i].v^son[u])
dfs(e[i].v,e[i].v);
}
signed main()
{
n=read();m=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<n;i++)
{
int u=read(),v=read();
e[++tot]=edge(v,f[u]),f[u]=tot;
e[++tot]=edge(u,f[v]),f[v]=tot;
}
dfs(1);
dfs(1,1);
for(int i=1;i<=n;i++)
if(i==top[i])
q.push(dep[i]);
while(!q.empty() && m>0)
{
m--;
ans+=q.top();
q.pop();
}
printf("%lld\n",ans);
}