[BZOJ 3252]攻略

本文介绍了一种解决特定有根树问题的高效算法。给定一个有点权的有根树,目标是通过选择叶子节点并计算其到根路径的最大贡献来最大化总贡献。文章详细解释了树链剖分的解法,将树划分为若干条链,并选取最大k条链求和作为最终答案。算法的时间复杂度为O(n),适用于大规模数据集。
摘要由CSDN通过智能技术生成

一、题目

题目描述

给定一个有点权的有根树,每次选择一个叶子节点,把它到根的路径全部算贡献,同一个点不重复贡献,问 k k k此选择之后的最大贡献是多少,根节点为 1 1 1

数据范围

n ≤ 200000 , 1 ≤ v a l u e ≤ 2 31 − 1 n\leq200000,1\leq value\le2^{31}-1 n200000,1value2311

二、解法

对原树树链剖分,只不过我们是把一个点到子树内叶子的最大权值和当作判断轻重的条件,这样原树被我们划分成了若干条链,我们选出其中最大的 k k k条求和就是答案。

此算法正确的正确性也很好理解,当一个点的重链被选走后,在从轻链处选就不能算这个点的贡献,我们划分也正好划分成了不重合的若干条链,时间复杂度 O ( n ) O(n) O(n),贴个代码 q w q qwq qwq

#include <cstdio>
#include <iostream>
#include <queue>
using namespace std;
#define int long long
const int M = 200005;
int read()
{
 int x=0,flag=1;char c;
 while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
 while(c>='0' && c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
 return x*flag;
}
int n,m,tot,ans,f[M],a[M],dep[M],fa[M],son[M],top[M];
priority_queue<int> q;
struct edge
{
    int v,next;
    edge(int V=0,int N=0) : v(V) , next(N) {}
}e[2*M];
void dfs(int u)
{
    dep[u]=a[u];
    for(int i=f[u];i;i=e[i].next)
    {
        int v=e[i].v;
        if(v==fa[u]) continue;
        fa[v]=u;
        dfs(v);
        dep[u]=max(dep[u],dep[v]+a[u]);
        if(dep[v]>dep[son[u]]) son[u]=v;
    }
}
void dfs(int u,int tp)
{
    top[u]=tp;
    if(son[u]) dfs(son[u],tp);
    for(int i=f[u];i;i=e[i].next)
        if(e[i].v^fa[u] && e[i].v^son[u])
            dfs(e[i].v,e[i].v);
}
signed main()
{
    n=read();m=read();
    for(int i=1;i<=n;i++)
        a[i]=read();
    for(int i=1;i<n;i++)
    {
        int u=read(),v=read();
        e[++tot]=edge(v,f[u]),f[u]=tot;
        e[++tot]=edge(u,f[v]),f[v]=tot;
    }
    dfs(1);
    dfs(1,1);
    for(int i=1;i<=n;i++)
        if(i==top[i])
            q.push(dep[i]);
    while(!q.empty() && m>0)
    {
        m--;
        ans+=q.top();
        q.pop();
    }
    printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值