CF513G3 Inversions problem

一、题目

点此看题

二、解法

我们直接设 d p [ i ] [ j ] dp[i][j] dp[i][j] i < j i<j i<j)为第 i , j i,j i,j个位置组成逆序对的期望,总期望就等于这些单个期望之和。

每次转移就枚举 i , j i,j i,j,再枚举区间,时间复杂度 O ( n 4 k ) O(n^4k) O(n4k),复杂度还可以优化,我们分四种情况讨论:

  • 第一种就是区间不包含 i i i j j j,可以直接用组合数求方案数
  • 第二种就是区间包含 i i i,但是不包含 j j j,枚举 i i i翻转移动的距离 k k k,然后算方案数
  • 第三种就是区间包含 j j j,但是不包含 i i i,操作同上
  • 第四种就是区间同时包含 i , j i,j i,j,枚举翻转移动的距离(两者翻转移动的距离一定相等,因为 j − i j-i ji差不变),此时需要用 1 − d p [ i + k ] [ j + k ] 1-dp[i+k][j+k] 1dp[i+k][j+k]来转移(因为顺序变了),然后算方案数

现在问题变成了如何快速算方案数,我举第二种情况的例子,第一个翻转区间一定是 [ i , k + i ] [i,k+i] [i,k+i](顺序可以反),我们需要把左右端点向外同时扩张(考虑一个点 p p p在区间 [ l , r ] [l,r] [l,r]的翻转点是 l + r − p l+r-p l+rp),所以最多能扩张出来的区间数是 min ⁡ ( min ⁡ ( i , k + i ) , j − max ⁡ ( i , k + i ) ) \min(\min(i,k+i),j-\max(i,k+i)) min(min(i,k+i),jmax(i,k+i)),剩余两种情况都用这种思路推导即可。

那么时间复杂度是 O ( n 3 k ) O(n^3k) O(n3k),还是过不去啊,这时候就要使用我们的收敛大法,我们把 k k k定为一个较大的值 900 900 900,以后的区间翻转会对答案影响越来越小,直到可以忽略不记,我们把 k k k和这个值取 min ⁡ \min min就行,但是如果这道题是取模就是另一回事了

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define db double
const int M = 105;
int read()
{
    int x=0,flag=1;
    char c;
    while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
    while(c>='0' && c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
    return x*flag;
}
int n,m,a[M];
db p,ans,tmp[M][M],dp[M][M];
int C2(int x)
{
    return x*(x+1)/2;
}
int main()
{
    n=read();m=min(read(),900);
    p=2.0/(n*(n+1));
    for(int i=1;i<=n;i++)
        a[i]=read();
    for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++)
            dp[i][j]=a[i]>a[j];
    for(int l=1;l<=m;l++)
    {
        memset(tmp,0,sizeof tmp);
        for(int i=1;i<=n;i++)
            for(int j=i+1;j<=n;j++)
            {
                tmp[i][j]=dp[i][j]*p*(C2(i-1)+C2(n-j)+C2(j-i-1));
                for(int k=1-i;k<=n-j;k++)
                    tmp[i][j]+=(1-dp[i+k][j+k])*min(min(i,i+k),n-max(j,j+k)+1)*p;
                for(int k=1-i;k<j-i;k++)
                    tmp[i][j]+=dp[i+k][j]*min(min(i,i+k),j-max(i,i+k))*p;
                for(int k=i-j+1;k<=n-j;k++)
                    tmp[i][j]+=dp[i][j+k]*min(n-max(j,j+k)+1,min(j,j+k)-i)*p;
            }
        for(int i=1;i<=n;i++)
            for(int j=i+1;j<=n;j++)
                dp[i][j]=tmp[i][j];
    }
    for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++)
            ans+=dp[i][j];
    printf("%.10lf\n",ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值