一、题目
二、解法
这道题有一个关键条件:路径可以重复经过某些点或边,当一条边在路径中出现了多次时,其权值在计算 XOR 和时也要被计算相应多的次数
,所以一条边经过了偶数次就不算贡献了。
我们先随便选一个起点到终点的简单路径,然后中间可以通过环来扩展,把路径看做初值,把环的权值建出线性基,那么最大值是异或起来的最大值,请看下图。
可以看出红色的边一定是经过偶数次的,不影响答案,这也说明上述做法的正确性。
现在还有一个问题,就是一开始的简单路径怎么选,请看下图。
假设我们先选了上面那条路径,但我们怎么知道下面那条路径会不会更优呢?其实这已经构成了一个环,如果下面的路径更优的话,原先算出来的答案一定会异或上这个大环的值,那就相当于上面的路径没选,而选择了下面的路径。
综上该方法是正确的,代码实现也不难咯。
#include <cstdio>
#define int long long
const int M = 100005;
int read()
{
int x=0,flag=1;char c;
while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
while(c>='0' && c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*flag;
}
int n,m,tot,del[M],f[M],p[M],vis[M];
struct edge
{
int v,c,next;
}e[2*M];
void insert(int x)
{
for(int i=62;i>=0;i--)
{
if(!(x>>i)) continue;
if(!p[i])
{
p[i]=x;
return ;
}
x^=p[i];
}
}
int query(int x)
{
for(int i=62;i>=0;i--)
if((x^p[i])>x)
x^=p[i];
return x;
}
void dfs(int u,int res)
{
del[u]=res;vis[u]=1;
for(int i=f[u];i;i=e[i].next)
{
int v=e[i].v,c=e[i].c;
if(!vis[v]) dfs(v,res^c);
else insert(res^del[v]^c);
}
}
signed main()
{
n=read();m=read();
for(int i=1;i<=m;i++)
{
int u=read(),v=read(),c=read();
e[++tot]=edge{v,c,f[u]},f[u]=tot;
e[++tot]=edge{u,c,f[v]},f[v]=tot;
}
dfs(1,0);
printf("%lld\n",query(del[n]));
}