一、题目
二、解法
可以考虑从左到右 d p dp dp,由于蜘蛛可以上下左右走,而 d p dp dp时考虑当前列和上一列的状态,而向右走的方案考虑不到,所以状态分为三种情况:设置集中点、没有集中点可去,有集中点可去。
设 d p [ i ] [ s ] dp[i][s] dp[i][s]为计算到了第 i i i列,第 i i i列的状态压缩为 s s s,转移时枚举上一行的状态(三进制)和这一行设置集中点的状态(二进制),算出这一行的状态后直接转移即可。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int M = 45;
const int inf = 0x3f3f3f3f;
int read()
{
int x=0,f=1;char c;
while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
return x*f;
}
int n,m,all,ans,dp[M][10000];
signed main()
{
n=read();m=read();all=1;
if(n>m) swap(n,m);
memset(dp,-0x3f,sizeof dp);
for(int i=1;i<=n;i++) all*=3;
dp[0][all-1]=0;
for(int j=0;j<m;j++)
for(int i=0;i<(1<<n);i++)
for(int k=0;k<all;k++)
{
int cnt=0,s=0;
for(int p=0,b=1;p<n;p++,b*=3)
{
if(!(i>>p&1)) continue;
if(p<n-1 && !(i>>1>>p&1)) s+=2*b;
else if(p && !(i<<1>>p&1)) s+=2*b;
else if((k/b)%3==0) s+=2*b;
else s+=b;
if((k/b)%3==1) cnt=-inf;
else cnt++;
}
dp[j+1][s]=max(dp[j+1][s],dp[j][k]+cnt);
}
for(int i=0;i<all;i++)
{
for(int p=0,b=1;p<n;p++,b*=3)
if((i/b)%3==1)
goto In;
ans=max(ans,dp[m][i]);
In:;
}
printf("%d\n",ans);
}