CF1437F Emotional Fishermen

一、题目

点此看题

二、解法

嗯,这个题比较有启发性。这种 n n n 比较大的排列计数的题做法应该比较唯一吧:先思考最后的排列怎么样,然后想各种办法去计数。这道题最后的排列一定长这个样子:
在这里插入图片描述

其中 b i b_i bi 表示某一段前缀的最大值,那么我们计数可以以 b i b_i bi 为关键点,设 f [ i ] f[i] f[i] 为最大值为 a i a_i ai 的方案数,初始化 f [ 0 ] = 1 f[0]=1 f[0]=1,答案是 f [ n ] f[n] f[n],我们首先需要把 a a a 数组排序。

考虑转移,其实就相当于把 a a a 填到原序列中去,当选了 f [ i ] f[i] f[i] 的时候,如果我们用 f [ j ] f[j] f[j] 来转移,设 l [ i ] l[i] l[i] 表示 2 a [ j ] ≤ a [ i ] 2a[j]\leq a[i] 2a[j]a[i] 的最大的 j j j,那么新解锁的数就有 l [ i ] − l [ j ] − 1 l[i]-l[j]-1 l[i]l[j]1,我们直接把这些数处理了,可以填的位置有 n − l [ j ] − 2 n-l[j]-2 nl[j]2(因为 i i i 要填在第一个空位才能解锁后面的数嘛),转移:
f [ i ] = f [ j ] × A ( n − l [ j ] − 2 , l [ i ] − l [ j ] − 1 ) f[i]=f[j]\times A(n-l[j]-2,l[i]-l[j]-1) f[i]=f[j]×A(nl[j]2,l[i]l[j]1)上述做法是在假设了有答案的情况来计数,所以要特判无解的情况哦。

#include <cstdio>
#include <algorithm>
using namespace std;
const int M = 5005;
const int MOD = 998244353; 
#define int long long
int read()
{
	int x=0,f=1;char c;
	while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
	while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
	return x*f;
}
int n,a[M],fac[M],inv[M],l[M],dp[M];
void init()
{
	inv[0]=inv[1]=fac[0]=1;
	for(int i=2;i<=n;i++) inv[i]=inv[MOD%i]*(MOD-MOD/i)%MOD;
	for(int i=1;i<=n;i++) fac[i]=i*fac[i-1]%MOD;
	for(int i=2;i<=n;i++) inv[i]=inv[i-1]*inv[i]%MOD;
}
int A(int n,int m)
{
	if(m<0 || n<m) return 0;
	return fac[n]*inv[n-m]%MOD;
}
signed main()
{
	n=read();
	init();
	for(int i=1;i<=n;i++)
		a[i]=read();
	sort(a+1,a+1+n);
	for(int i=1;i<=n;i++)
	{
		l[i]=l[i-1];
		while(2*a[l[i]+1]<=a[i]) l[i]++;
	}
	dp[0]=1;l[0]=-1;
	for(int i=1;i<=n;i++)
	{
		for(int j=0;j<=l[i];j++)
		{
			dp[i]=(dp[i]+dp[j]*A(n-l[j]-2,l[i]-l[j]-1))%MOD;
		}
	}
	if(l[n]<n-1) puts("0");
	else printf("%lld\n",dp[n]);
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页