# CF1437F Emotional Fishermen

## 二、解法

f [ i ] = f [ j ] × A ( n − l [ j ] − 2 , l [ i ] − l [ j ] − 1 ) f[i]=f[j]\times A(n-l[j]-2,l[i]-l[j]-1) 上述做法是在假设了有答案的情况来计数，所以要特判无解的情况哦。

#include <cstdio>
#include <algorithm>
using namespace std;
const int M = 5005;
const int MOD = 998244353;
#define int long long
{
int x=0,f=1;char c;
while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
return x*f;
}
int n,a[M],fac[M],inv[M],l[M],dp[M];
void init()
{
inv[0]=inv[1]=fac[0]=1;
for(int i=2;i<=n;i++) inv[i]=inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=i*fac[i-1]%MOD;
for(int i=2;i<=n;i++) inv[i]=inv[i-1]*inv[i]%MOD;
}
int A(int n,int m)
{
if(m<0 || n<m) return 0;
return fac[n]*inv[n-m]%MOD;
}
signed main()
{
init();
for(int i=1;i<=n;i++)
sort(a+1,a+1+n);
for(int i=1;i<=n;i++)
{
l[i]=l[i-1];
while(2*a[l[i]+1]<=a[i]) l[i]++;
}
dp[0]=1;l[0]=-1;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=l[i];j++)
{
dp[i]=(dp[i]+dp[j]*A(n-l[j]-2,l[i]-l[j]-1))%MOD;
}
}
if(l[n]<n-1) puts("0");
else printf("%lld\n",dp[n]);
}


04-19 46万+
05-22 4万+
11-14 298
08-06 56
06-27 290
08-20 107