初等数论学习笔记

第一章 整除的概念及性质

一、整除的概念

a , b ∈ Z , a ≠ 0 a,b \in \mathbb{Z}, a \neq 0 a,bZ,a=0,如果 ∃ q ∈ Z \exists q \in \mathbb{Z} qZ,使得 a × q = b a \times q=b a×q=b,则 b b b能被 a a a整除,记作 a ∣ b a \mid b ab,否则记作 a ∤ b a \nmid b ab

a ∣ b a \mid b ab表示 b b b a a a的倍数, a a a b b b的因子。

二、整除的性质

性质1 传递性:如果 a ∣ b a \mid b ab b ∣ c b \mid c bc,则 a ∣ c a \mid c ac

证明:

∵ a ∣ b 令 a x = b ( x ∈ Z 且 x ≠ 0 ) \because a \mid b \qquad 令ax=b (x \in \mathbb{Z}且x \neq 0) abax=b(xZx=0)

又 ∵ b ∣ c 令 b y = c ( y ∈ Z 且 y ≠ 0 ) 又\because b \mid c \qquad 令by=c (y \in \mathbb{Z}且y \neq 0) bcby=c(yZy=0)

∴ a x y = c ( x , y ∈ Z 且 x , y ≠ 0 ) \therefore axy=c (x,y \in \mathbb{Z}且x,y \neq 0) axy=c(x,yZx,y=0)

∴ a ∣ c \therefore a \mid c ac

性质2 a ∣ b a \mid b ab a ∣ c a \mid c ac等价于 ∀ Z \forall \mathbb{Z} Z x , y x,y x,y a ∣ ( b x + c y ) a \mid (bx+cy) a(bx+cy)

证明:

∵ a ∣ b 令 a s = b ( s ∈ Z 且 s ≠ 0 ) \because a \mid b \qquad 令as=b (s \in \mathbb{Z}且s \neq 0) abas=b(sZs=0)

又 ∵ b ∣ c 令 a t = c ( t ∈ Z 且 t ≠ 0 ) 又\because b \mid c \qquad 令at=c (t \in \mathbb{Z}且t \neq 0) bcat=c(tZt=0)

又 ∵ b x + c y = a s x + a t y ( s , t , x , y ∈ Z ) 又\because bx+cy=asx+aty (s,t,x,y \in \mathbb{Z}) bx+cy=asx+aty(s,t,x,yZ)

                   $=a(sx+ty)$

∴ a ∣ a ( s x + t y ) ⇒ a ∣ ( b x + c y ) \therefore a \mid a(sx+ty) \Rightarrow a \mid (bx+cy) aa(sx+ty)a(bx+cy)

性质3 设 m ≠ 0 m \neq 0 m=0,则 a ∣ b a \mid b ab等价于 m a ∣ m b ma \mid mb mamb

证明:

∵ a ∣ b , 令 a x = b ( x ∈ Z 且 x ≠ 0 ) \because a \mid b, 令ax=b (x \in \mathbb{Z}且x \neq 0) ab,ax=b(xZx=0)

∴ a x m = b m ( m ≠ 0 ) \therefore axm=bm(m \neq 0) axm=bm(m=0)

$\Leftrightarrow am \mid bm$

性质4 若 Z \mathbb{Z} Z x , y x,y x,y满足下式: a x + b y = 1 ax+by=1 ax+by=1,且 a ∣ n , b ∣ n a \mid n, b \mid n an,bn,那么 a b ∣ n ⇔ n a b ∈ Z ab \mid n \Leftrightarrow \frac{n}{ab} \in \mathbb{Z} abnabnZ

证明:

∵ a ∣ n , b ∣ n \because a \mid n, b \mid n an,bn

∴ n = a s = b t ( s , t ∈ Z 且 s , t ≠ 0 ) \therefore n=as=bt(s,t \in \mathbb{Z}且s,t \neq 0) n=as=bt(s,tZs,t=0)

$a,b \neq 0$

∵ a x + b y = 1 ⇒ x b + y a = 1 a b \because ax+by=1 \Rightarrow \frac{x}{b}+\frac{y}{a}=\frac{1}{ab} ax+by=1bx+ay=ab1

                       $\Rightarrow \frac{n}{ab}=n(\frac{x}{b}+\frac{y}{a})$

                                  $=\frac{nx}{b}+\frac{ny}{a}$

                                  $=tx+sy$

∵ t , x , s , y ∈ Z ∴ t x + s y ∈ Z \because t,x,s,y \in \mathbb{Z}\qquad \therefore tx+sy \in \mathbb{Z} t,x,s,yZtx+syZ

∴ n a b ∈ Z \therefore \frac{n}{ab} \in \mathbb{Z} abnZ

∴ a b ∣ n \therefore ab \mid n abn

性质5 若 b = q d + c ( q ∈ Z ) b=qd+c(q \in \mathbb{Z}) b=qd+c(qZ),那么 d ∣ b d \mid b db的充要条件为 d ∣ c d \mid c dc

证明:

d ∣ b ⇐ { d ∣ c b = q d + c d \mid b \Leftarrow\begin{cases}d \mid c \\ b=qd+c\end{cases} db{ dcb=qd+c

∵ d ∣ c ∴ d x = c ( x ∈ Z ) \because d \mid c \qquad \therefore dx=c(x \in \mathbb{Z}) dcdx=c(xZ)

∴ b = q d + x d = d ( q + x ) \therefore b=qd+xd=d(q+x) b=qd+xd=d(q+x)

∵ x , q ∈ Z \because x,q \in \mathbb{Z} x,qZ

∴ d ∣ b \therefore d \mid b db

d ∣ c ⇐ { d ∣ b b = q d + c d \mid c \Leftarrow\begin{cases}d \mid b \\ b=qd+c\end{cases} dc{ dbb=qd+c

∵ d ∣ b ∴ d y = b ( y ∈ Z ) \because d \mid b \qquad \therefore dy=b(y \in \mathbb{Z}) dbdy=b(yZ)

∴ d y = d q + c \therefore dy=dq+c dy=dq+c

∴ d ( y − q ) = c \therefore d(y-q)=c d(yq)=c

∵ y , q ∈ Z \because y,q \in \mathbb{Z} y,qZ

∴ d ∣ c \therefore d \mid c dc

第二章 模运算

一、定义

对于 a , b ∈ Z a,b \in \mathbb{Z} a,bZ,其中 b ≠ 0 b \neq 0 b=0,求 a ÷ b a \div b a÷b的余数的运算称为 a a a b b b,记作 a m o d    b a \mod b amodb

二、模运算的性质

性质1 模运算的分配律

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值