Datawhale 扣子Bot开发Task2笔记

#小白学习笔记,如有错误请大佬指正。

目录

一、Prompt 工程

1.概念

2.prompt设置

(1)编写清晰具体的指令

(2)化大为小,分步引导模型生成解决思路

(3)尽可能地完善智能体的功能,使它的回复更多样更全面。

(4)要求模型自我检查,减少错误输出。

二、扣子样例

1.新建一个智能体。

2.在完善好智能体名称、介绍、封面信息后,进入以下界面。按照文档完善提示词。​编辑

3.调试、修改细节。

三、参考文献


一、Prompt 工程

1.概念

       首先,我们需要明确什么是prompt。在LLM大模型的推理过程中,prompt通常指的是输入到模型中的初始文本或指令。这些文本或指令告诉模型要执行的任务,并为其提供必要的上下文信息。因此,prompt的设计对于模型的输出结果至关重要。

       prompt,给出关键词、指令——智能体完成依照相关内容的执行。相较详细的场景设定、事件描述,经过推理测算出的效果就越好。但使用智能体的用户不大可能耗费过多的时间精力去写一篇字数过多的指令,所以prompt的模型设计就要求高精度、逻辑通顺。

2.prompt设置

    其实在扣子手册上有描述如何编写人设和回复逻辑。如下图。地址链接:扣子 - 文档中心

        在完善prompt设置时,需要注意的是我们要遵循以下几点:

(1)编写清晰具体的指令

       写清晰具体的指令,尽量精简。模糊不清、语义不明的指令大概率会使智能体进行错误的逻辑分析、给出错误的答案。在设计提示时,另一个常见的技巧是避免说出什么不要做,而是说出应该做什么。这鼓励更加具体化和专注于细节,从而产生良好的模型响应。

       合理使用各种定界符(双引号“”、<>、[ ]等等),使模型能准确识别不同部分,给出不同的答案,区分要求回复里必备的格式以及智能体分析进行的结果。

       规范化格式回答,尽量分点、分段进行回复,使结果看起来赏心悦目、条理清晰。

       输入的指令与需要的结果能够密切相关,避免无效或无关的内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值