欧几里得算法(代码及证明过程)

本文详细介绍了欧几里得算法,包括其基本原理——GCD递归定理,通过一系列的数学推论进行证明,并提供了递归、非递归以及位运算三种代码实现方式。此外,还引用了《算法导论》作为参考资料。
摘要由CSDN通过智能技术生成

欧几里得算法(代码及证明过程)

一、基础知识

欧几里得算法的原理是 GCD递归定理

GCD递归定理:

对任意 非负整数 a 和 任意 整数 bgcd(a,b) = gcd(b, a mod b)

为了证明这个定理,我们首先需要知道一下几个有关 gcd基本知识相关等式跟推论

1.1 基本知识:

  1. 公约数

    定义:如果 d|a(d 整除 a)且 d|b,那么 d 是 a 与 b 的 公约数

    性质:如果 d|ad|b,那么 d|(ax + by); x,y ∈ Z(任意整数)

  2. 最大公约数

    定义:两个非零整数 a 和 b 的公约数里最大的就是 最大公约数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值