神经网络八股
人工智能实践:Tensorflow笔记 主讲人:曹健
来源慕课
import
导包
import tensorflow as tf
train, test
切分数据集,训练集数据x_train、训练集标签x_test、测试集数据y_train、测试集标签y_test
model = tf.keras.models.Sequential
Sequential函数是一个容器,通过指定参数来生成一个网络层
- 拉直层
tf.keras.layers.Flatten()
- 全连接层
tf.keras.layers.Dense(神经元个数,activation="激活函数",kernel_regularizer="正则化方式")
激活函数可选:relu, softmax, sigmoid, tanh
等
正则化方式可选:tf.keras.regularizers.l1(), tf.keras.regularizers.l2()
- 卷积层
tf.keras.layers.Conv2D(filter=卷积核个数,kernel_size=卷积核尺寸, strides=步长, padding="valid" or "same")
- LSTM层
tf.keras.layers.LSTM()
长短记忆神经网络
model.compile
选择训练时使用的优化器、损失函数和最终评价标准
model.compile(optimizer=优化器, loss=损失函数, metrics=["准确率"])
其中优化器可选:
'sgd' or tf.keras.optimizers.SGD(lr=学习率, decay=学习衰减率, momentum=动量参数)
'adagrad' or tf.keras.optimizers.Adagrad(lr=学习率)
'adadelta' or tf.keras.optimizers.Adadelta(lr=学习率)
'adam' or tf.keras.optimizers.Adam(lr=学习率, decay=学习衰减率, beta_1=0.9, beta_2=0.999)
损失函数可选:
'mse' or tf.keras.losses.MeanSquaredError()
'sparse_categorical_crossentropy' or tf.keras.losses.SparseCategoricalCrossentropy(from_logits=Faslse)
metrics可选:
'accuracy':y_和y都是数值表示,如y_=[1] y=[1]
'categorical_accuracy':y_和y都是以one_hot和概率分布表示,如y_=[0, 1, 0] y=[0.15, 0.35, 0.5]
'sparse_categorical_accuracy':y_以数值形式标志,y以one_hot形式表示,如y_=[1] y=[0.15, 0.35, 0.5]
model.fit
用于执行训练过程
model.fit(训练集的输入特征,
训练集的标签,
batch_size=,
eopchs=,
validation_data=(测试集的输入特征, 测试集的标签),
validation_split=从训练集划分多少给测试集,
validation_freq=多少次epoch测试一次)
model.summary
用于打印网络的结构和参数统计
示例代码
import tensorflow as tf
from sklearn import datasets
import numpy as np
# 切分训练集和测试集
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target
# 生成训练集和测试集
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)
# 构建模型-3个神经元的全连接层
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])
# 配置模型
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
# 训练模型
model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
# 打印模型结构
model.summary()