Python 多线程框架

import torch
from torch.utils.data import DataLoader, Dataset
import threading
import queue
import time

# 定义一个自定义的数据集类
class MyDataset(Dataset):
    def __init__(self):
        self.data = list(range(100))

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

# 定义一个数据处理函数
def process_data(data):
    # 模拟数据处理过程
    print("Processing data:", data)
    time.sleep(1)

# 定义一个数据处理线程类
class DataProcessThread(threading.Thread):
    def __init__(self, data_queue):
        super(DataProcessThread, self).__init__()
        self.data_queue = data_queue
        self.daemon = True

    def run(self):
        while True:
            batch = self.data_queue.get()
            if batch is None:
                break
            process_data(batch)
            self.data_queue.task_done()

# 创建自定义数据集实例
dataset = MyDataset()

# 创建 DataLoader 实例
dataloader = DataLoader(dataset, batch_size=4)

# 创建一个数据队列
data_queue = queue.Queue()

# 创建固定数量的数据处理线程
num_threads = 4
threads = [DataProcessThread(data_queue) for _ in range(num_threads)]

# 启动数据处理线程
for thread in threads:
    thread.start()

# 将数据批次放入队列
for batch in dataloader:
    data_queue.put(batch)

# 等待所有数据处理完成
data_queue.join()

# 向队列中添加结束标志
for _ in range(num_threads):
    data_queue.put(None)

# 等待数据处理线程结束
for thread in threads:
    thread.join()

print("All data has been processed.")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值