人工导论作业-博弈树+状态压缩dp+α-β剪枝

在 "100 game" 这个游戏中,两名玩家轮流选择从 1 到 10 的任意整数,累计整数和,先使得累计整数和 达到或超过  100 的玩家,即为胜者。

如果我们将游戏规则改为 “玩家 不能 重复使用整数” 呢?

例如,两个玩家可以轮流从公共整数池中抽取从 1 到 15 的整数(不放回),直到累计整数和 >= 100。

给定两个整数 maxChoosableInteger (整数池中可选择的最大数)和 desiredTotal(累计和),若先出手的玩家能稳赢则返回 true ,否则返回 false 。假设两位玩家游戏时都表现 最佳 。

示例 1:

输入:maxChoosableInteger = 10, desiredTotal = 11
输出:false
解释:
无论第一个玩家选择哪个整数,他都会失败。
第一个玩家可以选择从 1 到 10 的整数。
如果第一个玩家选择 1,那么第二个玩家只能选择从 2 到 10 的整数。
第二个玩家可以通过选择整数 10(那么累积和为 11 >= desiredTotal),从而取得胜利.
同样地,第一个玩家选择任意其他整数,第二个玩家都会赢。

示例 2:

输入:maxChoosableInteger = 10, desiredTotal = 0
输出:true

示例 3:

输入:maxChoosableInteger = 10, desiredTotal = 1
输出:true

提示:

  • 1 <= maxChoosableInteger <= 20
  • 0 <= desiredTotal <= 300
class Solution {
    private:
    int memo[1<<20];//用二进制数字的每一位表示该数字是否有被使用过,储存每个数字组合的赢家会是谁,方便记忆化搜索
    bool dfs(int num,int ct,bool who,int a,int b,int mn,int des)
    {
        if(memo[num]!=-1) return memo[num];//记忆化搜索,这里可能不太好理解为什么能使用记忆化搜索,其实是因为两个人都只会选择当下最优解,跟奇异博士一样看到了当前选择后续的最终结果
        for(int i=1;i<=mn;i++)//遍历可选数字范围的每一个数字
        {
            if(!(num&(1<<(i-1))))//如果位置数字没有被选择过就选择
            {
                int nct=ct+i;//当前已选过的数字总和
                if(nct>=des)//终止条件:如果当前已选的数字总和大于获胜条件就返回结果
                {
                    memo[num]=who;
                    return who;
                }

                bool child=dfs(num|(1<<(i-1)),nct,!who,a,b,mn,des);//探究该结点下所有选择博弈之后的最终结果

                if(who)如果当前是先手玩家
                {
                    a=max(a,static_cast<int>(child));//选择当前抉择的的最优解,使自己利益最大化
                   
                    if(child)//如果当前子结点有必然获胜的方法,这个必然获胜路径会向上传递
                    {
                        memo[num]=1;
                        return true;
                    }
                    if(b<=a) break;//alpha-beita剪枝,因为β是收益的上限,α是收益的底线,这样两者就是空集,无需判断
                }
                else
                {
                    b=min(b,static_cast<int>(child));//使对手利益最小化
                    
                    if(!child)
                    {
                        memo[num]=0;
                        return false;
                    }
                    if(b<=a) break;
                }
            }
        }
        memo[num]=!who;//判断完所有数字还没嬴就是对面嬴了
        return !who;
    }
    public:
        bool canIWin(int maxChoosableInteger, int desiredTotal) 
        {
            memset(memo,-1,sizeof(memo));

            if(desiredTotal<=1) return true;
            if((maxChoosableInteger * (maxChoosableInteger + 1))/2<desiredTotal) return false;

            return dfs(0,0,1,0,101,maxChoosableInteger,desiredTotal);
        }
    };

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值