在 "100 game" 这个游戏中,两名玩家轮流选择从 1
到 10
的任意整数,累计整数和,先使得累计整数和 达到或超过 100 的玩家,即为胜者。
如果我们将游戏规则改为 “玩家 不能 重复使用整数” 呢?
例如,两个玩家可以轮流从公共整数池中抽取从 1 到 15 的整数(不放回),直到累计整数和 >= 100。
给定两个整数 maxChoosableInteger
(整数池中可选择的最大数)和 desiredTotal
(累计和),若先出手的玩家能稳赢则返回 true
,否则返回 false
。假设两位玩家游戏时都表现 最佳 。
示例 1:
输入:maxChoosableInteger = 10, desiredTotal = 11 输出:false 解释: 无论第一个玩家选择哪个整数,他都会失败。 第一个玩家可以选择从 1 到 10 的整数。 如果第一个玩家选择 1,那么第二个玩家只能选择从 2 到 10 的整数。 第二个玩家可以通过选择整数 10(那么累积和为 11 >= desiredTotal),从而取得胜利. 同样地,第一个玩家选择任意其他整数,第二个玩家都会赢。
示例 2:
输入:maxChoosableInteger = 10, desiredTotal = 0 输出:true
示例 3:
输入:maxChoosableInteger = 10, desiredTotal = 1 输出:true
提示:
1 <= maxChoosableInteger <= 20
0 <= desiredTotal <= 300
class Solution {
private:
int memo[1<<20];//用二进制数字的每一位表示该数字是否有被使用过,储存每个数字组合的赢家会是谁,方便记忆化搜索
bool dfs(int num,int ct,bool who,int a,int b,int mn,int des)
{
if(memo[num]!=-1) return memo[num];//记忆化搜索,这里可能不太好理解为什么能使用记忆化搜索,其实是因为两个人都只会选择当下最优解,跟奇异博士一样看到了当前选择后续的最终结果
for(int i=1;i<=mn;i++)//遍历可选数字范围的每一个数字
{
if(!(num&(1<<(i-1))))//如果位置数字没有被选择过就选择
{
int nct=ct+i;//当前已选过的数字总和
if(nct>=des)//终止条件:如果当前已选的数字总和大于获胜条件就返回结果
{
memo[num]=who;
return who;
}
bool child=dfs(num|(1<<(i-1)),nct,!who,a,b,mn,des);//探究该结点下所有选择博弈之后的最终结果
if(who)如果当前是先手玩家
{
a=max(a,static_cast<int>(child));//选择当前抉择的的最优解,使自己利益最大化
if(child)//如果当前子结点有必然获胜的方法,这个必然获胜路径会向上传递
{
memo[num]=1;
return true;
}
if(b<=a) break;//alpha-beita剪枝,因为β是收益的上限,α是收益的底线,这样两者就是空集,无需判断
}
else
{
b=min(b,static_cast<int>(child));//使对手利益最小化
if(!child)
{
memo[num]=0;
return false;
}
if(b<=a) break;
}
}
}
memo[num]=!who;//判断完所有数字还没嬴就是对面嬴了
return !who;
}
public:
bool canIWin(int maxChoosableInteger, int desiredTotal)
{
memset(memo,-1,sizeof(memo));
if(desiredTotal<=1) return true;
if((maxChoosableInteger * (maxChoosableInteger + 1))/2<desiredTotal) return false;
return dfs(0,0,1,0,101,maxChoosableInteger,desiredTotal);
}
};