异步联邦学习-能耗:Energy-Efficient Dynamic Asynchronous Federated Learning in Mobile Edge Computing Networks

异步联邦学习


Energy-Efficient Dynamic Asynchronous Federated Learning in Mobile Edge Computing Networks

移动边缘计算网络中具有节能特性的动态异步联邦学习

会议:2023 IEEE International Conference on Communications (ICC): Green Communication Systems and Networks Symposium
原文链接:https://ieeexplore.ieee.org/document/10278887


一、摘要

为了打破数据孤岛并解决绿色通信的挑战,联邦学习(FL)被广泛应用于移动边缘计算(MEC)网络中,用于在网络边缘训练深度学习模型。然而,许多现有的FL算法并未充分考虑动态环境,导致模型收敛较且训练能耗较大。在本文中,我们设计了一个动态异步联邦学习(DAFL)模型,以提高MEC网络中FL的效率。具体而言,我们根据它们的到达顺序动态选择一定数量的移动设备(MDs)参与每个时期的全局聚合。与此同时,我们分析了本地更新和上传更新的能耗模型,并将问题制定为一个NP-hard的动态顺序决策问题,以最小化能耗。为了解决这个问题,我们提出了一种基于深度强化学习的能效算法,命名为DDAFL,根据每个时期MEC网络的状态智能地确定参与全局聚合的MDs的数量。与基准方案相比,所提出的算法可以显著降低能耗并加速模型收敛。

二、文章贡献

1.具体使用场景

大背景是在移动边缘计算场景。

2.贡献

主要有两个贡献:

  1. 本文在移动边缘计算网络中设计了一个DAFL模型,并分别对本地更新和上传更新的每个阶段进行能耗分析,以有效提高FL的效率,以期迎接未来绿色MEC网络。【基于FedAsync设计DAFL模型的启发,以适应MEC网络的动态环境。与FedAsync不同,DAFL能够有效解决模型收敛的困难】
  2. 本文提出了一种能效强化学习(DRL)算法DDAFL,智能地根据MEC网络在每个时期的状态确定参与全局更新的MDs数量,以显著降低能耗。【提出了一种节点选择策略】

三、系统模型和优化问题

1、文中图1是系统模型,包含A,B,C,D四个常规步骤:
系统模型

2、动态异步联邦学习模型

(1)该模型考虑了由于设备计算资源的差异,不同的移动设备对全局更新的贡献也不同,具有强大计算能力和低能耗的MD应更频繁地参与全局更新。【这在联邦平均算法中也是常规的考量】参数聚合公式:
在这里插入图片描述
(2)此外,在MEC网络中存在其他不稳定因素(如网络拥塞和设备离线),本文需要根据网络状态动态调整ES执行全局更新的策略。【设定了固定更新时间】
在这里插入图片描述

3、能源消耗模型

能源消耗分为本地能源消耗、传输能源消耗
(1)本地能源消耗:移动设备的计算能力可以用每秒CPU周期数来衡量,原文:
在这里插入图片描述

在这里插入图片描述
(2)传输能源消耗:
在这里插入图片描述

四、提出一种算法设计

1、深度强化学习的制定

为了节约训练过程中的能源消耗,本文使用深度强化学习(Deep Reinforcement Learning, DRL)来决定nt的值,即需要上传的客户端数量。图三展示了DRL的结构,其中代理(agent)从环境中感知状态,然后输出相应状态下每个动作的值。根据策略 π,代理选择一个具有最大值的动作 a_t 进行执行,并接收奖励 r_t。
在这里插入图片描述
原文解释:
在这里插入图片描述
译文:
在这里插入图片描述

解读:当d=0时,代表了不带折扣因子的即时奖励,后续奖励都带有折扣因子。这里我还有不太理解的地方,即后续奖励是如何计算的

DRL算法详解:
在这里插入图片描述

由于缺少深度强化学习知识,我对这波解释没看懂,qaq

2、本文所提算法的训练,DDAFL

本文使用深度 Q 网络(DQN)对强化学习代理进行训练。本文使用深度 Q 网络(DQN)对深度强化学习代理进行训练,其中深度神经网络(DNNs)被设计用于估计值函数的近似值 Q(s_t, a;θ),其中θ是神经网络的参数。实际上,DNNs 可以被看作是一个策略 π(s_t | a;θ) = max_a Q(s_t, a;θ)。策略 π 被持续更新,以便代理可以在状态 s_t 中采取更有价值的动作 a_t。这一部分着重讲了各模块是如何互相配合运行的。【有点没理解透,回头补习补习深度强化学习方面的知识】

五、实验

实验基于TensorFlow进行

基本设置

考虑了四个方面的设置:评估设置、数据集和模型、性能指标、基准比较。在基准模型的比较重,引入了两个基准模型,FedAvg和FedAsync。

1、收敛性

本文首先考虑训练代理的收敛性能,该训练在7个移动设备(MDs)上进行,共进行了200个episode。图四左图是损失函数值曲线,右图是奖励曲线。图五左图是损失值函数曲线,右图是准确率曲线。从下图中,文章得出结论,所提出的DAFL可以加速联邦学习模型训练的收敛。
在这里插入图片描述
在这里插入图片描述

2、能耗

下图展示了能耗相关的数据。不仅与其他两种基准方案作比较,还比较了自身能耗随着设备数量变化的情况。
在这里插入图片描述

六、总结

译文:在本文中,我们设计了一种在MEC网络中有效提高联邦学习(FL)效率的DAFL模型。具体而言,我们从本地更新和上传更新的角度分析了能量消耗,并将优化问题制定为一个动态顺序决策问题,以最小化能量消耗。为了解决制定的问题,我们进一步提出了一种基于能效的强化学习算法DDAFL,根据MEC网络在每个时期的状态智能地确定参与全局聚合的移动设备(MDs)数量。模拟结果表明,与考虑的基准方案相比,所提出的算法可以显著减少能量消耗并加速MEC网络中的FL模型收敛。在未来,我们将进一步研究MEC网络中的层次聚合问题。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Ajax(Asynchronous and XML)是一种用于在Web应用程序中进行异步通信的技术。它允许在不刷新整个页面的情况下,通过与服务器进行数据交换来更新部分页面内容。 在前端配置中,当使用Ajax进行跨域请求时,可能会遇到跨域资源共享(CORS)的问题。CORS是一种机制,用于控制在不同域之间进行资源共享的权限。 其中,"Access-Control-Allow-Origin: *" 是CORS中的一个响应头字段,表示服务器允许任意域的请求访问资源。这样配置后,服务器将允许来自任何域的请求访问资源,即实现了跨域资源共享。 前端配置中,可以通过设置XMLHttpRequest对象的相关属性来实现Ajax请求和处理CORS问题。具体步骤如下: 1. 创建XMLHttpRequest对象:使用`new XMLHttpRequest()`创建一个XMLHttpRequest对象。 2. 配置请求:使用`open()`方法设置请求方法、URL和是否异步。 3. 设置请求头:使用`setRequestHeader()`方法设置请求头,例如设置`"Content-Type"`为`"application/json"`。 4. 发送请求:使用`send()`方法发送请求,可以传递参数或数据。 5. 处理响应:使用`onreadystatechange`事件监听状态变化,并在状态为4(请求已完成)时处理响应数据。 如果遇到CORS问题,可以在服务器端进行配置,允许特定的域访问资源。具体配置方法因服务器而异,可以参考服务器的文档或使用特定的库或框架来处理CORS问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虫本初阳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值