AGI|基于Joint BERT模型的意图识别技术实践

目录

一、介绍

二、模型架构

三、最佳实践


一、介绍

意图识别在诸多领域已经有了非常广泛的应用,例如各个品牌的智能语音助手,如今多模态模型能力迅猛增长,与LLM交流方式变得多样化,为了给LLM提供高质量有价值的上下文嵌入信息,引入意图识别变得尤为重要,其不仅能够过滤掉大部分无用但又不得不加入pipline的工具,还可以极大优化整个pipline的响应时间以获得更好的用户体验。

意图识别类似分类任务,意图分类的方法包括CNN、LSTM、基于注意力的CNN、分层注意力网络、对抗性多任务学习。在调研时看到了JointBert论文。

二、模型架构

CLS([CLS])是BERT模型中的一个特殊标记(special token),位于输入序列的第一个位置。CLS标记的主要作用是表示整个输入序列的类别。在训练BERT模型时,我们将输入序列的最后一个token传给分类层,这个token就是CLS标记。分类层将这个标记作为输入,输出一个代表序列类别的向量。这个向量在预测阶段被用来判断输入序列所属的类别。

SEP([SEP])是BERT模型中的另一个特殊标记,它位于输入序列的最后一个位置。SEP标记的主要作用是分隔不同的输入序列,使BERT模型能够同时处理多个输入序列。在训练和预测阶段,我们将不同的输入序列用SEP标记分隔开,使BERT模型能够正确地处理它们。

Joint BERT模型基于BERT的架构,利用其强大的双向上下文表示能力。它通过在BERT的基础上进行简单的微调(fine-tuning),来同时处理意图分类和槽位填充任务。Joint BERT模型通过使用BERT的隐藏状态来同时预测意图和填充槽位。具体来说,它使用特殊标记[CLS]的第一个隐藏状态来预测意图,而其他标记的最终隐藏状态则用于通过softmax层分类槽位填充标签。Joint BERT模型的优化目标是最大化条件概率p(yi, ys|x),即给定输入x时,意图yi和槽位序列ys的联合概率。这通过最小化交叉熵损失来实现端到端的微调。为了改进槽位填充性能,论文中还探讨了在Joint BERT模型之上添加条件随机场(CRF)层的效果。CRF可以帮助模型学习槽位标签之间的依赖关系,从而提高槽位填充的准确性。

三、最佳实践

基础环境

python310

GPU Memory > 4G

得益于Bert模型的优点,我们可以在CPU上进行高效推理

conda create-n intent-cls python=3.10
conda activateintent-cls
git clonehttps://devops.digitalchina.com/dcg/wuhan/tai/ai-team-demo-subgroup/intent-cls 
cd intent-cls
pip install-r requirements.txt

数据准备

项目提供了SMP2019数据集,结构如下

{
    "text": "我们下次什么时候再来一起看电影",
    "domain": "cinemas",
    "intent": "DATE_QUERY",
    "slots": {}
}

按照此数据集我造了20条关于与LLM交互时最常见的两种意图,分别为CHAT以及IMAGE_GENERATE

{
    "text": "我们能在病毒睡觉时杀死它们吗?",
    "domain": "ai",
    "intent": "CHAT",
    "slots": {}
}
{
    "text": "呈现一座巍峨的火山正喷发的壮观景象,熔岩流淌在周围的村庄中,天空被火光染红。",
    "domain": "ai",
    "intent": "IMAGE_GENERATE",
    "slots": {}
}

hyper parameter

lr:5e-4

epoc:10

batch_size:64

adam_epsilon:1e-8

warmup_steps:60

training log

batch_size=64 显存占用 4052MB

[1/20] train loss:2.8581509590148926dev acc: 0.3480392156862745dev intent_avg:0.25def slot_avg:0.09803921568627451save best model:*
[2/20] train loss:2.828829526901245dev acc: 1.0dev intent_avg:0.5def slot_avg:0.5save best model:*
[3/20] train loss:2.2913732528686523dev acc: 1.0882352941176472dev intent_avg:0.5def slot_avg:0.5882352941176471save best model:*
[4/20] train loss:1.6844485998153687dev acc: 1.1666666666666665dev intent_avg:0.5def slot_avg:0.6666666666666666save best model:*
[5/20] train loss:1.4401047229766846dev acc: 1.2745098039215685dev intent_avg:0.5def slot_avg:0.7745098039215687save best model:*
[6/20] train loss:1.1510858535766602dev acc: 1.4117647058823528dev intent_avg:0.5def slot_avg:0.9117647058823529save best model:*
[7/20] train loss:0.9410368204116821dev acc: 1.4607843137254903dev intent_avg:0.5def slot_avg:0.9607843137254902save best model:*
[8/20] train loss:0.7689159512519836dev acc: 1.7058823529411766dev intent_avg:0.75def slot_avg:0.9558823529411765save best model:*
[9/20] train loss:0.5948187112808228dev acc: 1.7058823529411766dev intent_avg:0.75def slot_avg:0.9558823529411765save best model:
[10/20] train loss:0.4157700538635254dev acc: 1.7058823529411766dev intent_avg:0.75def slot_avg:0.9558823529411765save best model:
[11/20] train loss:0.31954818964004517dev acc: 1.7058823529411766dev intent_avg:0.75def slot_avg:0.9558823529411765save best model:
[12/20] train loss:0.20628906786441803dev acc: 1.7058823529411766dev intent_avg:0.75def slot_avg:0.9558823529411765save best model:
[13/20] train loss:0.14416351914405823dev acc: 1.9558823529411766dev intent_avg:1.0def slot_avg:0.9558823529411765save best model:*
[14/20] train loss:0.0873243659734726dev acc: 1.965686274509804dev intent_avg:1.0def slot_avg:0.9656862745098039save best model:*
[15/20] train loss:0.05459991469979286dev acc: 1.9803921568627452dev intent_avg:1.0def slot_avg:0.9803921568627451save best model:*
[16/20] train loss:0.04355735704302788dev acc: 1.9803921568627452dev intent_avg:1.0def slot_avg:0.9803921568627451save best model:
[17/20] train loss:0.02095913328230381dev acc: 1.9803921568627452dev intent_avg:1.0def slot_avg:0.9803921568627451save best model:
[18/20] train loss:0.02244378998875618dev acc: 1.9803921568627452dev intent_avg:1.0def slot_avg:0.9803921568627451save best model:
[19/20] train loss:0.012173544615507126dev acc: 1.9803921568627452dev intent_avg:1.0def slot_avg:0.9803921568627451save best model:
[20/20] train loss:0.009846788831055164dev acc: 1.9803921568627452dev intent_avg:1.0def slot_avg:0.9803921568627451save best model:
lastmodel dev intent_avg:1.0def slot_avg:0.9803921568627451

training loss

模型评估

由于数据集较少,训练集与测试集按照8:2的比例划分,训练后测试集的100%正确率并不能有效说明最终效果。

项目中提供了fastapi的部署脚本,可以快速启动一个异步推理服务,详情请参见README。

请求CURL

curl --location 'http://127.0.0.1:8000/detect' \
--header 'Content-Type: application/json' \
--data '{
    "text": "xxxx"
}'

测试结果如下

{
    "text": "火箭迟早要上天,为什么不在天上发射?"
},
{
    "text": "火箭迟早要上天,为什么不在天上发射?",
    "intent": "CHAT",
    "slots": {}
}

{
    "text": "导盲犬禁止入内,是给盲人看的,还是给导盲犬看的?"
},
{
    "text": "导盲犬禁止入内,是给盲人看的,还是给导盲犬看的?",
    "intent": "CHAT",
    "slots": {}
}

{
    "text": "森林,女孩,短发,战靴,光晕"
},
{
    "text": "森林,女孩,短发,战靴,光晕",
    "intent": "IMAGE_GENERATE",
    "slots": {}
}

{
    "text": "帮我画一个昏暗的房间,里面有很多魔法阵,魔法阵泛着各种光芒,一位智者正在看书"
},
{
    "text": "帮我画一个昏暗的房间,里面有很多魔法阵,魔法阵泛着各种光芒,一位智者正在看书",
    "intent": "IMAGE_GENERATE",
    "slots": {}
}

补充

这里并没有使用槽位填充,是因为这个场景并不需要信息抽取,只需判断用户意图即可用于后续处理。如若需要信息抽取请按照SMP2019数据集格式给出slot槽位的内容。

  • 意图标签:以txt格式给出,每行一个意图,未识别意图以[UNK]标签表示。以SMP2019为例。

  • 槽位标签:与意图标签类似,以txt格式给出。包括三个特殊标签:[PAD]表示输入序列中的padding token, [UNK]表示未识别序列标签, [O]表示没有槽位的token标签。对于有含义的槽位标签,又分为以'B_'开头的槽位开始的标签, 以及以'I_'开头的其余槽位标记两种。

另外,意图识别数据应需要不断的收集与维护,初始数据集不用很多,但要在项目中做好数据采集与清洗,定期进行模型训练并更新,对于一些bad case需要人为判断缺陷并改善数据集中的类似case,正确率才会越来越高。

本文代码gitlab地址:https://devops.digitalchina.com/dcg/wuhan/tai/ai-team-demo-subgroup/intent-cls

参考资料:

1、Joint BERTBERT for Joint Intent Classification and Slot Filling

2、Joint BERT python实现:GitHub - monologg/JointBERT: Pytorch implementation of JointBERT: “BERT for Joint Intent Classification and Slot Filling”

作者:徐辉| 后端开发工程师


欢迎关注“神州数码云基地”公众号,回复“AI合集”领取最新整理100+AI报告合集

版权声明:文章由神州数码武汉云基地团队实践整理输出,转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值