前言
Tip:
该博客里的内容是博主学习的一些心路历程,期间也会查阅一些其他博客和文献,还有一些自己的理解,可能会存在一些理解不正确的地方。如果阅读这篇博客请带着学习和质疑两种心态。如有问题,欢迎指出。
LSTM理论
1.LSTM介绍
LSTM(Long Short-Term Memory)是一种 RNN 的特殊类型,它可以学习长期依赖信息。通过引入了自循环,以产生梯度长时间持续流动的路径,解决RNN梯度消失的问题。它在RNN的基础上添加了输入门、遗忘门、输出门和细胞状态。
2.LSTM结构图
通过RNN和LSTM的结构图对比,可以直观地感受到LSTM在结构上的变化。
下面看一下LSTM每个门控的结构图和公式,这样可能会容易理解一些。
①细胞状态:
我理解细胞状态应该代表的就是前些时刻的信息。它直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。
②遗忘门:
通过字面意思就可以感觉到,遗忘门就是决定会从细胞状态中丢弃什么信息。遗忘门的输入是 ht−1 h t − 1 和 xt x t ,输出一个在 0 到 1 之间的数值给每个在细胞状态