LSTM原理

本文介绍了LSTM(长短期记忆网络)的基本原理,作为RNN的一种特殊类型,LSTM通过输入门、遗忘门、输出门和细胞状态来解决长期依赖信息的学习问题。详细阐述了LSTM的结构,包括细胞状态、遗忘门、输入门和输出门的工作机制,并探讨了为何LSTM能有效处理长期依赖问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

Tip:
       该博客里的内容是博主学习的一些心路历程,期间也会查阅一些其他博客和文献,还有一些自己的理解,可能会存在一些理解不正确的地方。如果阅读这篇博客请带着学习和质疑两种心态。如有问题,欢迎指出。

LSTM理论

1.LSTM介绍

       LSTM(Long Short-Term Memory)是一种 RNN 的特殊类型,它可以学习长期依赖信息。通过引入了自循环,以产生梯度长时间持续流动的路径,解决RNN梯度消失的问题。它在RNN的基础上添加了输入门、遗忘门、输出门和细胞状态。

2.LSTM结构图

       通过RNN和LSTM的结构图对比,可以直观地感受到LSTM在结构上的变化。
这里写图片描述

RNN结构图

这里写图片描述
LSTM结构图

       下面看一下LSTM每个门控的结构图和公式,这样可能会容易理解一些。

①细胞状态:
       我理解细胞状态应该代表的就是前些时刻的信息。它直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。
这里写图片描述

细胞状态图

②遗忘门:
       通过字面意思就可以感觉到,遗忘门就是决定会从细胞状态中丢弃什么信息。遗忘门的输入是 ht1 h t − 1 xt x t ,输出一个在 0 到 1 之间的数值给每个在细胞状态

TSO-LSTM(Time Series Ordinary-LSTM)是一种用于时间序列预测的长短期记忆网络(LSTM)变体。TSO-LSTM通过引入时间序列的普通差分方程(Ordinary Differential Equations, ODEs)来增强传统LSTM模型的预测能力。其原理图如下: 1. **输入层**:接收时间序列数据作为输入。 2. **嵌入层**:将输入数据转换为高维特征向量。 3. **LSTM层**:处理嵌入后的特征向量,捕捉时间序列中的长期依赖关系。 4. **ODE层**:在LSTM层的基础上,引入普通差分方程来建模时间序列的连续动态变化。 5. **输出层**:生成预测结果。 ### TSO-LSTM原理图详解 1. **输入层**: - 输入时间序列数据,例如传感器数据、股票价格等。 2. **嵌入层**: - 将离散的时间序列数据转换为连续的特征向量,以便LSTM层进行处理。 3. **LSTM层**: - 处理嵌入后的特征向量,捕捉时间序列中的长期依赖关系。 - 通过门机制(输入门、遗忘门、输出门)来控制信息的流动。 4. **ODE层**: - 在LSTM层的基础上,引入普通差分方程来建模时间序列的连续动态变化。 - ODE层可以通过神经网络来近似求解,从而增强模型的预测能力。 5. **输出层**: - 生成预测结果,例如下一时刻的时间序列值。 ### TSO-LSTM的优势 - **增强的预测能力**:通过引入ODE层,TSO-LSTM能够更好地捕捉时间序列的连续动态变化。 - **灵活性**:ODE层可以根据具体任务进行调整,从而适应不同的应用场景。 - **高效性**:相比传统LSTM,TSO-LSTM在处理复杂时间序列数据时具有更高的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值