90天,广告商单43张,小红书AI庭院风视频制作详解教程

本文介绍了一个在小红书上利用AI绘画工具制作逼真庭院风景视频的热门案例,强调了慢生活题材的共鸣、巧妙的剪辑手法和AI辅助的高效视频创作过程。作者分享了具体的操作步骤,显示这种模式在商业上的成功,特别是对于新手视频创作者来说具有吸引力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天给大家分享一个目前在小红书很火的AI绘画商单号案例。

首先给大家看看案例视频形态

这类视频内容非常简单,主要展示农家庭院的别致景色。通过AI绘画工具生成图片,再利用剪辑工具将画面增加动态元素,让整个视频逼真鲜活,加上舒缓的音乐非常有氛围感。

像这个账号8月5日起号,粉丝累计4200,合作商单高达43张。当然我又找了几个类似同样题材的小红书账号,商单数据都非常不错,平均每月商单数在12-18条左右,想要做小红书商单的同学们,可以优先考虑做这类内容形态。

2ead3e4c10210f0081c0f8ca17928aa6.jpeg

这类账号值得借鉴的几个核心点:

1.慢生活类的内容题材

这类题材容易引发用户共鸣,调动用户情绪,小红书用户群体主要是年轻、有活力、注重生活品质的女性群体,区域居中在1-2线城市,高压高节奏的生活下,自然向往慢生活的庭院生活。

你完全可以参考这类内容进行延展,比如民宿、古村落、边际小城、古风楼房等等,利用AI绘画工具批量生成这些真实的摄影图像。

2.巧妙的剪辑手法

素材剪辑处理非常巧妙,基本每个视频画面中,都会添加动态的元素,比如飘落的树叶,雨滴,摇曳的树枝和花朵等等,让整个画面灵动逼真,不认真看,几乎看不出AI制作的痕迹。

加上视频时长均在6秒,有效提升短视频完播率,因为时间

资源下载链接为: https://pan.quark.cn/s/a55a57705e7e “八爪鱼采集器8.1.24.zip”是一个包含八爪鱼采集器8.1.24版本的压缩包。八爪鱼采集器是一款功能强大的网页数据抓取工具,能够帮助用户自动化地从互联网中提取各类信息,例如文章内容、产品价格、用户评价。等它在数据分析、市场研究、竞争情报等领域具有重要的应用价值。 压缩包内包含以下四个文件: “Octopus Setup 8.1.24.exe”:这是八爪鱼采集器的安装程序。用户可以通过运行该文件在计算机上安装8.1.24版本的八爪鱼采集器。安装过程中,系统会提示用户阅读并接受许可协议,选择安装路径,并且可能需要管理员权限来完成安装。 “八爪鱼8版本说明.txt”:该文本文件详细介绍了八爪鱼采集器8版本的主要功能、改进点和更新内容。它可能涵盖新功能的说明,例如更智能的爬虫算法、增强的数据处理能力、优化的用户界面等。此外,还可能包含关于如何使用新版本的指导,以及与旧版本的对比。 “安装前必读.txt”:这是一个重要的文档,用户在安装八爪鱼采集器之前应仔细阅读。它可能包含系统需求、安装步骤以及注意事项,例如确保操作系统兼容性、关闭杀毒软件以避免误报、预留足够的硬盘空间等,以确保安装过程顺利且安全。 “配置规则必读.txt”:这是一份关于如何配置和定制八爪鱼采集器的指南,尤其是针对新用户。采集器的配置规则是其核心功能之一,用户可以根据这些规则设置要爬取的网站、指定抓取的数据字段、设定爬取频率以及数据处理方式等。该文档可能包含一系列实例和最佳实践,帮助用户更好地理解和使用八爪鱼采集器的功能。 八爪鱼采集器8.1.24版本提供了一套完整的网页数据采集解决方案,从安装到配置,再到实际采集操作,都有详细的指导文件。用户通过学习和使用该工具,可以高效地从网络上获取大量有价值的信息,为各种业务决策提供
资源下载链接为: https://pan.quark.cn/s/936ae63168d9 在深度学习领域,预训练模型已成为提升模型性能和效率的关键工具。Xception 是 Google 在 2017 年提出的一种深度卷积神经网络架构,其灵感来源于 Inception 系列,但通过去除 Inception 模块中的串联操作,实现了更高效的计算。PyTorch 是一个开源的深度学习框架,提供了众多预训练模型,其中就包括 Xception。本文将深入探讨 Xception 在 PyTorch 中的实现以及预训练权重的加载方法。 Xception 的核心创新在于其“深度可分离卷积”结构。这种卷积分为两步:首先是深度卷积,对每个输入通道独立进行卷积操作;然后是逐点卷积,对深度卷积后的特征图进行通道间的混合。这种分解方式显著减少了计算量,同时保持了模型的强大表达能力。PyTorch 中的 Xception 预训练模型通常包含了在大规模图像分类任务(如 ImageNet)上训练得到的权重。这些权重可用于初始化模型,帮助模型在新任务上更快收敛,尤其在数据量较小时,能够显著提升模型的泛化能力。例如,“xception-b5690688.pth”文件就是一种预训练权重文件,其哈希值用于确保模型参数版本的一致性。 加载 Xception 预训练模型的步骤如下:首先,需要导入 PyTorch 相关库和模块,代码如下: 然后,加载模型并设置是否需要训练所有层: 其中,pretrained=True表示加载预训练权重,若设置为False,则模型将以随机初始化状态创建。如果需要对模型进行微调,可以锁定前面部分层的权重,仅训练自定义的顶层,代码如下: 接下来,可以定义自己的损失函数和优化器,并开始训练。需要注意的是,尽管 Xception 是在 ImageNet 上预训练的,但直接应用于其他任务时,可能
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值