高效搜索技巧:最小覆盖子串解法【力扣75题 python】

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
python源码解读
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给你一个字符串 s、一个字符串 t。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 ""

注意:

  • 对于 t 中重复的字符,我们希望在 s 的子串中也有相应数量的这些字符。
  • 如果有多个满足条件的子串,返回任意一个即可。
输入格式
  • s:源字符串。
  • t:需要被覆盖的目标字符串。
输出格式
  • 返回满足条件的最小子串,如果不存在则返回空字符串。

示例

示例 1
输入: s = "ADOBECODEBANC", t = "ABC"
输出: "BANC"
示例 2
输入: s = "a", t = "a"
输出: "a"

方法一:滑动窗口

解题步骤
  1. 初始化两个字典:一个用于记录 t 中各字符的数量,一个用于记录当前窗口中各字符的数量。
  2. 使用两个指针表示窗口leftright 表示窗口的左右边界。
  3. 扩展右边界:移动 right 以包括更多的字符。
  4. 收缩左边界:当窗口包含所有 t 的字符后,尝试移动 left 缩小窗口直到窗口不再满足条件。
  5. 记录最小窗口:在收缩窗口时更新最小窗口大小。
完整的规范代码
def minWindow(s, t):
    """
    使用滑动窗口寻找最小覆盖子串
    :param s: str, 源字符串
    :param t: str, 需要被覆盖的目标字符串
    :return: str, 满足条件的最小子串
    """
    from collections import Counter
    t_count = Counter(t)
    window = {}
    
    have, need = 0, len(t_count)
    left, right = 0, 0
    res, res_len = [-1, -1], float('inf')

    while right < len(s):
        character = s[right]
        window[character] = window.get(character, 0) + 1
        
        if character in t_count and window[character] == t_count[character]:
            have += 1
        
        while have == need:
            # 更新结果
            if (right - left + 1) < res_len:
                res = [left, right]
                res_len = right - left + 1
            # 尝试收缩窗口
            window[s[left]] -= 1
            if s[left] in t_count and window[s[left]] < t_count[s[left]]:
                have -= 1
            left += 1
        
        right += 1

    l, r = res
    return s[l:r+1] if res_len != float('inf') else ""

# 示例调用
print(minWindow("ADOBECODEBANC", "ABC"))  # 输出: "BANC"
print(minWindow("a", "a"))  # 输出: "a"
算法分析
  • 时间复杂度:(O(n)),其中 n 是字符串 s 的长度。
  • 空间复杂度:(O(m)),其中 m 是字符串 t 的长度,用于存储 t_countwindow

方法二:优化滑动窗口

解题步骤
  1. 跳跃式扩展:仅当遇到 t 中的字符时扩展窗口,跳过 s 中不在 t 中的字符。
  2. 有效收缩:当窗口满足条件时,尽量收缩窗口直到不满足条件。
完整的规范代码
def minWindow(s, t):
    """
    使用优化的滑动窗口寻找最小覆盖子串
    :param s: str, 源字符串
    :param t: str, 需要被覆盖的目标字符串
    :return: str, 满足条件的最小子串
    """
    from collections import Counter
    t_count = Counter(t)
    filtered_s = [(i, s[i]) for i in range(len(s)) if s[i] in t_count]
    
    left, right = 0, 0
    have, need = 0, len(t_count)
    window = {}
    res, res_len = [-1, -1], float('inf')

    while right < len(filtered_s):
        character = filtered_s[right][1]
        window[character] = window.get(character, 0) + 1
        
        if window[character] == t_count[character]:
            have += 1
        
        while have == need:
            start, end = filtered_s[left][0], filtered_s[right][0]
            if (end - start + 1) < res_len:
                res = [start, end]
                res_len = end - start + 1
            window[filtered_s[left][1]] -= 1
            if window[filtered_s[left][1]] < t_count[filtered_s[left][1]]:
                have -= 1
            left += 1
        
        right += 1

    l, r = res
    return s[l:r+1] if res_len != float('inf') else ""

# 示例调用
print(minWindow("ADOBECODEBANC", "ABC"))  # 输出: "BANC"
print(minWindow("a", "a"))  # 输出: "a"
算法分析
  • 时间复杂度:(O(n + m)),其中 n 是字符串 s 的长度,m 是字符串 t 的长度。
  • 空间复杂度:(O(m)),用于存储 t_countwindow,加上 filtered_s 的空间,取决于 ts 中的字符数量。

方法三:优化数据结构

解题步骤
  1. 使用数组优化:使用数组代替哈希表来优化存储,因为字符集是有限的。
  2. 同方法一,但使用数组进行字符计数。
完整的规范代码
def minWindow(s, t):
    """
    使用数组优化滑动窗口寻找最小覆盖子串
    :param s: str, 源字符串
    :param t: str, 需要被覆盖的目标字符串
    :return: str, 满足条件的最小子串
    """
    from collections import Counter
    t_count = Counter(t)
    s_count = [0] * 128
    need = len(t_count)
    have = 0
    
    left, right = 0, 0
    res, res_len = [-1, -1], float('inf')

    while right < len(s):
        s_count[ord(s[right])] += 1
        if s[right] in t_count and s_count[ord(s[right])] == t_count[s[right]]:
            have += 1
        
        while have == need:
            if (right - left + 1) < res_len:
                res = [left, right]
                res_len = right - left + 1
            s_count[ord(s[left])] -= 1
            if s[left] in t_count and s_count[ord(s[left])] < t_count[s[left]]:
                have -= 1
            left += 1
        
        right += 1

    l, r = res
    return s[l:r+1] if res_len != float('inf') else ""

# 示例调用
print(minWindow("ADOBECODEBANC", "ABC"))  # 输出: "BANC"
print(minWindow("a", "a"))  # 输出: "a"
算法分析
  • 时间复杂度:(O(n)),其中 n 是字符串 s 的长度。
  • 空间复杂度:(O(1)),数组的大小固定为字符集的大小,通常认为是常数。

方法四:双端队列优化

解题步骤
  1. 使用双端队列:使用队列存储满足条件的字符索引,快速定位和更新窗口的边界。
  2. 队列操作:在扩展和收缩窗口时,更新队列来快速响应窗口的变化。
完整的规范代码
from collections import deque

def minWindow(s, t):
    """
    使用双端队列优化滑动窗口寻找最小覆盖子串
    :param s: str, 源字符串
    :param t: str, 需要被覆盖的目标字符串
    :return: str, 满足条件的最小子串
    """
    t_count = Counter(t)
    window = {}
    queue = deque()
    have, need = 0, len(t_count)
    res, res_len = "", float('inf')

    for i, char in enumerate(s):
        if char in t_count:
            queue.append(i)
            window[char] = window.get(char, 0) + 1

            if window[char] == t_count[char]:
                have += 1

            while queue and have == need:
                if (queue[-1] - queue[0] + 1) < res_len:
                    res = s[queue[0]:queue[-1]+1]
                    res_len = queue[-1] - queue[0] + 1
                left_char = s[queue.popleft()]
                window[left_char] -= 1
                if window[left_char] < t_count[left_char]:
                    have -= 1

    return res

# 示例调用
print(minWindow("ADOBECODEBANC", "ABC"))  # 输出: "BANC"
print(minWindow("a", "a"))  # 输出: "a"
算法分析
  • 时间复杂度:(O(n)),其中 n 是字符串 s 的长度。
  • 空间复杂度:(O(m)),其中 m 是字符串 t 的长度,用于存储窗口和队列。

方法五:动态规划扩展

解题步骤
  1. 动态规划思路:使用动态规划技术记录窗口内字符出现频率,并动态更新最小覆盖子串。
  2. 状态转移:状态转移方程考虑当前字符是否可以形成新的最小窗口。
完整的规范代码
def minWindow(s, t):
    """
    使用动态规划扩展解决最小覆盖子串问题
    :param s: str, 源字符串
    :param t: str, 需要被覆盖的目标字符串
    :return: str, 满足条件的最小子串
    """
    from collections import defaultdict
    t_count = Counter(t)
    window = defaultdict(int)
    have, need = 0, len(t_count)
    res, res_len = "", float('inf')
    left = 0

    for right in range(len(s)):
        window[s[right]] += 1
        if s[right] in t_count and window[s[right]] == t_count[s[right]]:
            have += 1
        
        while have == need:
            if (right - left + 1) < res_len:
                res = s[left:right+1]
                res_len = right - left + 1
            window[s[left]] -= 1
            if s[left] in t_count and window[s[left]] < t_count[s[left]]:
                have -= 1
            left += 1

    return res

# 示例调用
print(minWindow("ADOBECODEBANC", "ABC"))  # 输出: "BANC"
print(minWindow("a", "a"))  # 输出: "a"
算法分析
  • 时间复杂度:(O(n)),其中 n 是字符串 s 的长度。
  • 空间复杂度:(O(m)),其中 m 是字符串 t 的长度,用于存储窗口状态。

不同算法的优劣势对比

特征方法一:滑动窗口方法二:优化滑动窗口方法三:优化数据结构方法四:双端队列优化方法五:动态规划扩展
时间复杂度(O(n))(O(n + m))(O(n))(O(n))(O(n))
空间复杂度(O(m))(O(m))(O(1))(O(m))(O(m))
优势直观,易实现减少无关字符处理空间占用最小高效更新窗口状态记录,灵活调整
劣势空间复杂度相对高实现复杂实现复杂空间利用较高实现最为复杂

应用示例

文本分析:在文本分析和自然语言处理中,找出包含指定词汇集的最短句子或段落非常有用,可以应用上述算法。

关键词高亮:在文档编辑或网页浏览中,快速找到并高亮显示包含所有关键词的最小文本块。

数据库查询优化:在处理大规模文本数据库查询时,快速确定包含多个搜索条件的最小文本区域,提高查询效率和响应速度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据分析螺丝钉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值