力扣第202题“快乐数”

关注微信公众号 数据分析螺丝钉 免费领取价值万元的python/java/商业分析/数据结构与算法学习资料

在本篇文章中,我们将详细解读力扣第202题“快乐数”。通过学习本篇文章,读者将掌握如何使用哈希表和快慢指针法来解决这一问题,并了解相关的复杂度分析和模拟面试问答。每种方法都将配以详细的解释,以便于理解。

问题描述

力扣第202题“快乐数”描述如下:

编写一个算法来判断一个数 n 是不是快乐数。

「快乐数」定义为:

对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是无限循环但始终变不到 1。如果可以变为 1,那么这个数就是快乐数。

示例:

输入: 19
输出: true
解释: 
1² + 9² = 82
8² + 2² = 68
6² + 8² = 100
1² + 0² + 0² = 1

示例:

输入: 2
输出: false

解题思路

方法一:哈希表法
  1. 初步分析

    • 使用哈希表记录已经出现过的数字。
    • 如果出现重复数字,则表示进入循环,不是快乐数。
    • 如果结果为1,则是快乐数。
  2. 步骤

    • 初始化哈希表为空。
    • 循环计算每个数字的平方和。
    • 检查哈希表,如果数字已存在则返回false,否则加入哈希表。
    • 如果结果为1,则返回true。
代码实现
def isHappy(n):
    def get_next(number):
        total_sum = 0
        while number > 0:
            digit = number % 10
            number = number // 10
            total_sum += digit ** 2
        return total_sum
    
    seen = set()
    while n != 1 and n not in seen:
        seen.add(n)
        n = get_next(n)
    
    return n == 1

# 测试案例
print(isHappy(19))  # 输出: True
print(isHappy(2))   # 输出: False
方法二:快慢指针法
  1. 初步分析

    • 使用快慢指针来检测循环。
    • 慢指针每次移动一步,快指针每次移动两步。
    • 如果快慢指针相遇,则表示进入循环,不是快乐数。
    • 如果快指针到达1,则是快乐数。
  2. 步骤

    • 初始化快慢指针为输入数字。
    • 循环计算每个指针的平方和。
    • 检查快慢指针,如果相遇则返回false。
    • 如果快指针到达1,则返回true。
代码实现
def isHappy(n):
    def get_next(number):
        total_sum = 0
        while number > 0:
            digit = number % 10
            number = number // 10
            total_sum += digit ** 2
        return total_sum
    
    slow = n
    fast = get_next(n)
    while fast != 1 and slow != fast:
        slow = get_next(slow)
        fast = get_next(get_next(fast))
    
    return fast == 1

# 测试案例
print(isHappy(19))  # 输出: True
print(isHappy(2))   # 输出: False

复杂度分析

  • 时间复杂度
    • 哈希表法:O(log n),每次平方和计算需要log n次运算。
    • 快慢指针法:O(log n),每次平方和计算需要log n次运算。
  • 空间复杂度
    • 哈希表法:O(log n),用于存储已经出现的数字。
    • 快慢指针法:O(1),只需要常数空间用于指针操作。

模拟面试问答

问题 1:你能描述一下如何解决这个问题的思路吗?

回答:我们可以使用哈希表法和快慢指针法来解决这个问题。哈希表法通过记录已经出现过的数字来检测循环,如果出现重复数字则返回false。快慢指针法通过快慢指针来检测循环,如果快慢指针相遇则返回false。如果快指针到达1,则返回true。

问题 2:为什么选择使用哈希表法和快慢指针法来解决这个问题?

回答:哈希表法可以高效地记录已经出现的数字,检测循环。快慢指针法可以通过快慢指针的移动检测循环,两种方法都可以有效地解决快乐数问题。

问题 3:你的算法的时间复杂度和空间复杂度是多少?

回答:两种方法的时间复杂度都是O(log n),每次平方和计算需要log n次运算。哈希表法的空间复杂度为O(log n),用于存储已经出现的数字。快慢指针法的空间复杂度为O(1),只需要常数空间用于指针操作。

问题 4:在代码中如何处理边界情况?

回答:对于输入为0或负数的情况,可以直接返回false,因为负数和0不可能是快乐数。对于其他正整数,通过哈希表法和快慢指针法处理。

问题 5:你能解释一下快慢指针法的工作原理吗?

回答:快慢指针法是一种检测链表循环的算法。慢指针每次移动一步,快指针每次移动两步。如果快慢指针相遇,则表示存在循环。如果快指针到达1,则表示是快乐数。

问题 6:在代码中如何确保返回的结果是正确的?

回答:通过循环计算每个数字的平方和,使用哈希表记录已经出现的数字,或者使用快慢指针检测循环,确保返回的结果是正确的。

问题 7:你能举例说明在面试中如何回答优化问题吗?

回答:在面试中,如果面试官问到如何优化算法,我会首先分析当前算法的瓶颈,如时间复杂度和空间复杂度,然后提出优化方案。例如,可以通过减少不必要的计算来提高性能,或者使用更高效的数据结构来优化空间复杂度。解释其原理和优势,最后提供优化后的代码实现。

问题 8:如何验证代码的正确性?

回答:通过运行代码并查看结果,验证返回的数字是否为快乐数。可以使用多组测试数据,包括正常情况和边界情况,确保代码在各种情况下都能正确运行。例如,可以在测试数据中包含多个数字,确保代码结果正确。

问题 9:你能解释一下解决快乐数问题的重要性吗?

回答:解决快乐数问题在数学和计算机科学中具有一定的趣味性和挑战性。通过学习和应用哈希表法和快慢指针法,可以提高处理循环和检测链表问题的能力。在实际应用中,这些方法也可以用于解决其他类似的问题。

问题 10:在处理大数据集时,算法的性能如何?

回答:算法的性能取决于输入数字的大小。在处理大数据集时,通过优化哈希表法和快慢指针法的实现,可以显著提高算法的性能。例如,通过减少不必要的计算和优化数据结构,可以减少时间和空间复杂度,从而提高算法的效率。

总结

本文详细解读了力扣第202题“快乐数”,通过使用哈希表法和快慢指针法高效地解决了这一问题,并提供了详细的解释和模拟面试问答。希望读者通过本文的学习,能够在力扣刷题的过程中更加得心应手。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据分析螺丝钉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值