一文吃透斐波那契变种DP!LeetCode 257「二叉树的所有路径」两大解法多语言题解

一、题目简介

LeetCode 257《二叉树的所有路径》(Binary Tree Paths)是典型的树形递归、回溯题。它要求你找出从根节点到每个叶子节点的所有路径,常用于考查递归、深度优先遍历(DFS)与字符串拼接等基础功。

二、题目描述

给定一棵二叉树的根节点 root,返回所有从根到叶子的路径,每条路径用字符串表示,节点值用"->"连接。

三、示例分析

示例1:

输入: root = [1,2,3,null,5]
输出: ["1->2->5","1->3"]
  • 路径1:1->2->5
  • 路径2:1->3

四、解题思路与详细步骤

方案一:递归深度优先遍历(DFS)

步骤详解
  1. 用辅助函数dfs递归遍历树,每次传递当前路径字符串。
  2. 递归终止:如果当前节点是叶子节点(无左右子树),把完整路径加入答案。
  3. 递归分支:递归遍历左右子树,路径字符串拼接上当前节点值和"->"。
  4. 返回所有路径组成的字符串列表。
优缺点
  • 写法简洁,递归表达清晰。
  • 递归深度等于树高,适合路径收集题型。

方案二:栈+迭代模拟DFS

步骤详解
  1. 用显式栈(list/stack)保存节点和当前路径字符串的pair。
  2. 循环出栈节点,如果是叶子节点,把路径加入结果。
  3. 如果有右/左子树,把子节点和新路径分别入栈。
  4. 直到栈空,全部路径遍历完毕。
优缺点
  • 适合避免递归栈溢出,容易调试。
  • 代码比递归略繁琐,空间略高但同阶。

五、代码实现(Python/Java/C++)

Python实现

解法一:递归DFS
class Solution:
    def binaryTreePaths(self, root):
        def dfs(node, path, res):
            if not node:
                return
            if not node.left and not node.right:
                res.append(path + str(node.val))
            else:
                dfs(node.left, path + str(node.val) + "->", res)
                dfs(node.right, path + str(node.val) + "->", res)
        res = []
        dfs(root, "", res)
        return res
解法二:迭代栈
class Solution:
    def binaryTreePaths(self, root):
        if not root:
            return []
        stack, res = [(root, str(root.val))], []
        while stack:
            node, path = stack.pop()
            if not node.left and not node.right:
                res.append(path)
            if node.right:
                stack.append((node.right, path + "->" + str(node.right.val)))
            if node.left:
                stack.append((node.left, path + "->" + str(node.left.val)))
        return res

Java实现

解法一:递归DFS
import java.util.*;
class Solution {
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> res = new ArrayList<>();
        dfs(root, "", res);
        return res;
    }
    void dfs(TreeNode node, String path, List<String> res) {
        if (node == null) return;
        if (node.left == null && node.right == null) {
            res.add(path + node.val);
        } else {
            dfs(node.left, path + node.val + "->", res);
            dfs(node.right, path + node.val + "->", res);
        }
    }
}
解法二:栈迭代
import java.util.*;
class Solution {
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> res = new ArrayList<>();
        if (root == null) return res;
        Stack<Pair<TreeNode, String>> stack = new Stack<>();
        stack.push(new Pair<>(root, String.valueOf(root.val)));
        while (!stack.isEmpty()) {
            Pair<TreeNode, String> p = stack.pop();
            TreeNode node = p.getKey();
            String path = p.getValue();
            if (node.left == null && node.right == null) {
                res.add(path);
            }
            if (node.right != null)
                stack.push(new Pair<>(node.right, path + "->" + node.right.val));
            if (node.left != null)
                stack.push(new Pair<>(node.left, path + "->" + node.left.val));
        }
        return res;
    }
    // Pair类可用AbstractMap.SimpleEntry或自定义
}

C++实现

解法一:递归DFS
#include <vector>
#include <string>
using namespace std;

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int v): val(v), left(nullptr), right(nullptr) {}
};

class Solution {
public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> res;
        dfs(root, "", res);
        return res;
    }
    void dfs(TreeNode* node, string path, vector<string>& res) {
        if (!node) return;
        if (!node->left && !node->right)
            res.push_back(path + to_string(node->val));
        else {
            dfs(node->left, path + to_string(node->val) + "->", res);
            dfs(node->right, path + to_string(node->val) + "->", res);
        }
    }
};
解法二:栈迭代
#include <vector>
#include <string>
#include <stack>
using namespace std;

class Solution {
public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> res;
        if (!root) return res;
        stack<pair<TreeNode*, string>> stk;
        stk.push({root, to_string(root->val)});
        while (!stk.empty()) {
            auto [node, path] = stk.top(); stk.pop();
            if (!node->left && !node->right)
                res.push_back(path);
            if (node->right)
                stk.push({node->right, path + "->" + to_string(node->right->val)});
            if (node->left)
                stk.push({node->left, path + "->" + to_string(node->left->val)});
        }
        return res;
    }
};

六、复杂度分析

  • 时间复杂度:O(N),N为节点数,每个节点访问一次
  • 空间复杂度:O(H)(递归/栈深度,H为树高),O(N)用于结果

七、边界与细节注意

  • 空树返回[]
  • 只有根节点返回自身值字符串
  • 路径用"->"连接节点值
  • 允许左右子树为空

八、模拟面试环节及答案

1. 问:递归和迭代各有什么优缺点?

答:
递归写法直观、易理解,但深度大时栈溢出风险高。迭代法能处理大树但代码更繁琐。

2. 问:如果要求输出路径为整数数组怎么办?

答:
DFS时用vector/ArrayList存节点值,叶子节点时复制vector加入结果,最终再格式化输出。

3. 问:允许节点值为负数怎么办?

答:
不影响。字符串拼接或数组保存均正常支持负数。

4. 问:树特别深怎么优化空间?

答:
用迭代法模拟,避免递归栈过深导致溢出。

5. 问:允许有重复路径吗?

答:
允许(只要每条路径唯一对应一条根到叶子的通路)。

九、总结升华

二叉树路径收集是DFS/回溯典型应用,掌握递归与迭代两种写法后可迁移至路径计数、路径和、树结构序列化等高阶题型,是刷题和面试基础必修题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据分析螺丝钉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值