一、题目简介
LeetCode 257《二叉树的所有路径》(Binary Tree Paths)是典型的树形递归、回溯题。它要求你找出从根节点到每个叶子节点的所有路径,常用于考查递归、深度优先遍历(DFS)与字符串拼接等基础功。
二、题目描述
给定一棵二叉树的根节点 root,返回所有从根到叶子的路径,每条路径用字符串表示,节点值用"->"
连接。
三、示例分析
示例1:
输入: root = [1,2,3,null,5]
输出: ["1->2->5","1->3"]
- 路径1:1->2->5
- 路径2:1->3
四、解题思路与详细步骤
方案一:递归深度优先遍历(DFS)
步骤详解
- 用辅助函数dfs递归遍历树,每次传递当前路径字符串。
- 递归终止:如果当前节点是叶子节点(无左右子树),把完整路径加入答案。
- 递归分支:递归遍历左右子树,路径字符串拼接上当前节点值和"->"。
- 返回所有路径组成的字符串列表。
优缺点
- 写法简洁,递归表达清晰。
- 递归深度等于树高,适合路径收集题型。
方案二:栈+迭代模拟DFS
步骤详解
- 用显式栈(list/stack)保存节点和当前路径字符串的pair。
- 循环出栈节点,如果是叶子节点,把路径加入结果。
- 如果有右/左子树,把子节点和新路径分别入栈。
- 直到栈空,全部路径遍历完毕。
优缺点
- 适合避免递归栈溢出,容易调试。
- 代码比递归略繁琐,空间略高但同阶。
五、代码实现(Python/Java/C++)
Python实现
解法一:递归DFS
class Solution:
def binaryTreePaths(self, root):
def dfs(node, path, res):
if not node:
return
if not node.left and not node.right:
res.append(path + str(node.val))
else:
dfs(node.left, path + str(node.val) + "->", res)
dfs(node.right, path + str(node.val) + "->", res)
res = []
dfs(root, "", res)
return res
解法二:迭代栈
class Solution:
def binaryTreePaths(self, root):
if not root:
return []
stack, res = [(root, str(root.val))], []
while stack:
node, path = stack.pop()
if not node.left and not node.right:
res.append(path)
if node.right:
stack.append((node.right, path + "->" + str(node.right.val)))
if node.left:
stack.append((node.left, path + "->" + str(node.left.val)))
return res
Java实现
解法一:递归DFS
import java.util.*;
class Solution {
public List<String> binaryTreePaths(TreeNode root) {
List<String> res = new ArrayList<>();
dfs(root, "", res);
return res;
}
void dfs(TreeNode node, String path, List<String> res) {
if (node == null) return;
if (node.left == null && node.right == null) {
res.add(path + node.val);
} else {
dfs(node.left, path + node.val + "->", res);
dfs(node.right, path + node.val + "->", res);
}
}
}
解法二:栈迭代
import java.util.*;
class Solution {
public List<String> binaryTreePaths(TreeNode root) {
List<String> res = new ArrayList<>();
if (root == null) return res;
Stack<Pair<TreeNode, String>> stack = new Stack<>();
stack.push(new Pair<>(root, String.valueOf(root.val)));
while (!stack.isEmpty()) {
Pair<TreeNode, String> p = stack.pop();
TreeNode node = p.getKey();
String path = p.getValue();
if (node.left == null && node.right == null) {
res.add(path);
}
if (node.right != null)
stack.push(new Pair<>(node.right, path + "->" + node.right.val));
if (node.left != null)
stack.push(new Pair<>(node.left, path + "->" + node.left.val));
}
return res;
}
// Pair类可用AbstractMap.SimpleEntry或自定义
}
C++实现
解法一:递归DFS
#include <vector>
#include <string>
using namespace std;
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode(int v): val(v), left(nullptr), right(nullptr) {}
};
class Solution {
public:
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> res;
dfs(root, "", res);
return res;
}
void dfs(TreeNode* node, string path, vector<string>& res) {
if (!node) return;
if (!node->left && !node->right)
res.push_back(path + to_string(node->val));
else {
dfs(node->left, path + to_string(node->val) + "->", res);
dfs(node->right, path + to_string(node->val) + "->", res);
}
}
};
解法二:栈迭代
#include <vector>
#include <string>
#include <stack>
using namespace std;
class Solution {
public:
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> res;
if (!root) return res;
stack<pair<TreeNode*, string>> stk;
stk.push({root, to_string(root->val)});
while (!stk.empty()) {
auto [node, path] = stk.top(); stk.pop();
if (!node->left && !node->right)
res.push_back(path);
if (node->right)
stk.push({node->right, path + "->" + to_string(node->right->val)});
if (node->left)
stk.push({node->left, path + "->" + to_string(node->left->val)});
}
return res;
}
};
六、复杂度分析
- 时间复杂度:O(N),N为节点数,每个节点访问一次
- 空间复杂度:O(H)(递归/栈深度,H为树高),O(N)用于结果
七、边界与细节注意
- 空树返回[]
- 只有根节点返回自身值字符串
- 路径用"->"连接节点值
- 允许左右子树为空
八、模拟面试环节及答案
1. 问:递归和迭代各有什么优缺点?
答:
递归写法直观、易理解,但深度大时栈溢出风险高。迭代法能处理大树但代码更繁琐。
2. 问:如果要求输出路径为整数数组怎么办?
答:
DFS时用vector/ArrayList存节点值,叶子节点时复制vector加入结果,最终再格式化输出。
3. 问:允许节点值为负数怎么办?
答:
不影响。字符串拼接或数组保存均正常支持负数。
4. 问:树特别深怎么优化空间?
答:
用迭代法模拟,避免递归栈过深导致溢出。
5. 问:允许有重复路径吗?
答:
允许(只要每条路径唯一对应一条根到叶子的通路)。
九、总结升华
二叉树路径收集是DFS/回溯典型应用,掌握递归与迭代两种写法后可迁移至路径计数、路径和、树结构序列化等高阶题型,是刷题和面试基础必修题。