传统路径规划算法
传统路径规划算法有:人工势场算法、模拟退火算法、禁忌搜索算法、模糊逻辑算法等。
模拟退火算法
模拟退火算法(Simulated Annealing,简称SA)诞生之初是用于求解复杂系统的能量分布问题lS。美国 IBM 公司物理学家S.Kirkpatrick、C.D.Gelatt和M.P.Vecchi于 1983年发觉复杂系统的能量分布函数和一些组合最优化问题(如著名的旅行商问题TSP)的成本函数相当类似,即寻求最低成本就是寻求最低能量,从而把模拟退火算法的应用范围推广到解决组合最优化问题的领域。其原理是在路径规划的过程中,以一种持续变化但最后趋于零的概率在当前解的邻域范围内随机查找所设定的目标函数可能的全局最优化解,从而达到全局寻优的目的。模拟退火算法通用性强,常被用于解决相对比较复杂的非线性优化问题,但是算法性能受初始值及参数设定的影响大。
人工势场算法
人工势场算法(Artificial Potential Field)由Oussama Khatib于1986年发表的关于移动机器人实时避障的文章中提出。其基本思想是:将路径规划中的环境模型比拟为引力场加斥力场混合存在的人造势场,位于人造势场内的目标点对机器人起到吸引效果,周围障碍物对机器人起到排斥效果,机器人在两者的综合影响下进行路径规划,因此如何设计人造势场是影响算法性能的决定因素所在。人工势场算法常出现于处理机器人的动态避障问题,以及行驶轨迹的平滑控制问题,但是由于缺乏全局环境信息,只适合应用于解决局部空间的避障问题,路径规划的最后结果也存在陷入局部最优的风险。
模糊逻辑算法
模糊逻辑算法是在模糊控制理论的基础上产生、发展而来的优化算法。应用模糊逻辑算法解决路径规划问题的原理是将源于生理学中生