PROSAIL模型前向模拟与植被参数遥感提取

26 篇文章 0 订阅
文章探讨了遥感技术如何用于大范围获取植被参数,强调了遥感在生态文明建设和生态系统健康评价中的重要性。通过Python平台和PROSAIL模型,介绍反演建模的原理与方法,包括数据处理、模型参数敏感性分析和反演算法等,并提供案例数据与上机操作指导,旨在促进实际工作应用。
摘要由CSDN通过智能技术生成

更多资讯,关注公众号:Ai科研学术社; 

“绿水青山就是金山银山”的生态文明理念现已深入人心,从顶层设计到全面部署,生态文明建设进入举措最实、推进最快、力度最大、成效最好的时期。生态文明评价必须将生态系统健康作为基本内容,而作为生态系统健康评价的重要指标之一——植被参数(如生物物理、生物化学、结构参数等)如何获取日益受到重视。

传统的地面实测方法能够得到比较准确的植被参数(如叶面积指数、覆盖度、生物量、叶绿素、干物质、叶片含水量、FPAR等),但其获取信息有限,难以满足大范围提取植被参数的需求,尤其在异质地表区域。遥感技术的发展为植被生长状态及动态监测提供了重要的技术手段,与传统地面实测方法不同,遥感把传统的“点”测量获取的有限代表性信息扩展为更加符合客观世界的“面”信息(即区域信息),且不会对生态系统造成破坏,能够长期、动态、连续地估算植被参数,在区域或全球尺度植被参数估算中具有不可替代的优势。随着科学技术的发展和生态文明建设的需要,借助遥感数据反演植被参数,可为生态系统健康评价提供关键的数据支持,并且植被参数遥感反演是当前遥感应用研究的重要内容之一,也是国际遥感领域的热点研究方向。

光学遥感主要反映地物的光谱反射特性信息,如何通过构建遥感光谱反射信号与地表参数之间的关系模型来准确估算植被参数是举办本次培训班的主要目的。基于Python平台,以PROSAIL模型为例较为系统地阐释其反演建模思路与基本原理,并进行深入讨论,重点讲解PROSAIL模型反演方法涉及的遥感数据、辐射传输模型、模型参数敏感性分析、代价函数构建、反演算法、迭代求解等主要环节。

1、原理深入浅出的讲解;

2、技巧方法讲解,提供所有案例数据及代码;

3、与项目案例相结合讲解实现方法,对接实际工作应用 ;

4、跟学上机操作、独立完成案例操作练习、全程问题跟踪解析;

5、 专属助学群辅助巩固学习及实际工作应用交流,不定期召开线上答疑。

主讲专家来自中国科学院及重点高校资深专家,长期从事植被参数遥感反演与应用方面的研究和教学工作,拥有丰富的科研及上机操作经验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值