R语言回归及混合效应(多水平/层次/嵌套)模型及贝叶斯实现技术

该课程详细介绍了回归分析的发展,重点讲解了混合效应模型在科学研究中的应用,包括线性与广义线性模型,以及它们的混合效应版本。此外,还涵盖了贝叶斯实现、时间空间自相关和系统发育数据的分析。课程旨在提升科研人员的数据分析能力,帮助选择合适的统计模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归分析是科学研究中十分重要的数据分析工具。随着现代统计技术发展,回归分析方法得到了极大改进。混合效应模型(Mixed effect model),或称多水平模型(Multilevel model)/分层模型(Hierarchical Model)/嵌套模型(Nested Model),无疑是现代回归分析中应用最为广泛的统计模型,代表了现代回归分析主流发展方向。混合效应模型形式灵活可以应对现代科学研究中各种数据情况,与传统回归模型相比具有更为强大数据分析能力,且结果更为可信。本课程将从科学研究中各种数据情况和分析方法概述出发,首先介绍传统回归分析方法,包括一般线性回归(lm)、广义线性回归(glm)等R语言实现方法;然后进一步介绍混合效应模型,包括线性混合效应模型(lmm)、广义线性混合效应模型(glmm);然后介绍回归及混合效应模型贝叶斯实现方法、嵌套型随机效应混合效应分析及贝叶斯方法、时间和空间自相数据纳入混合效应模型及贝叶斯实现,系统发育数据纳入混合效应模型及贝叶斯实现以及非线性数据分析包括广义可加(混合)模型和非线性(混合)模型及贝叶斯实现。分为两部分:第一部分为回归及混合效应(多水平/层次/嵌套)模型高级应用,第二部分为贝叶斯回归及混合效应模型,使大家能应对科研工作中各种数据局面,选择合适模型,提高数据分析能力。

关注公众号:Ai科研学术社

张老师(副研究员),长期从事R语言结构方程模型、群落生态学、保护生物学、景观生态学和生态模型方面的研究和教学工作,已发表了多篇论文,拥有丰富的科研及实践经验。

专题一:科学研究中数据及回归分析概述

1、科学研究中的主要实验设计

2、科学研究中的主要数据类型

3、回归分析历史、理论基础

4、回归分析基本假设、常见问题及应对策略

专题二:回归与混合效应(多水平/层次/嵌套)模型

第一节:一般线性模型(lm)

1、基本形式、基本假设、估计方法、参数检验、模型检验

2、一般线性回归、方差分析及协方差分析

3、一般线性回归模型验证

4、一般线性回归模型选择-逐步回归

第二节:广义线性模型(glm)

1、基本形式、基本假设、估计方法、参数检验、模型检验

2、0,1数据分析:伯努利分布、二项分布及其过度离散问题

3、计数数据各种情况及模型选择:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型

4、广义线性模型的模型比较和选择-似然比和AIC

第三节:线性混合效应模型(lmm)

1、线性混合效应模型基本原理

2、线性混合效应模型建模步骤及实现

3、线性混合效应模型的预测和模型诊断

4、线性混合效应模型的多重比较

第四节:广义线性混合效应模型(glmm)

1、广义线性混合效应模型基本原理

2、广义线性混合效应模型建模步骤及流程

3、广义线性混合效应模型分析0,1数据

4、广义线性混合效应模型分析计数数据及模型选择:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型

专题三:贝叶斯(brms)回归与混合效应(多水平/层次/嵌套)模型

第一节:贝叶斯回归及混合效应模型上

1、贝叶斯回归分析简介

2、利用brms实现贝叶斯回归分析简介

2、贝叶斯回归分析的模型诊断、交叉验证、预测和作图

第二节:贝叶斯回归及混合效应模型下

1、贝叶斯线性混合效应模型及广义线性混合效应模型

2、贝叶斯计数数据分析:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型

第三节:嵌套型随机效应混合效应模型分析及贝叶斯实现

1、数据分层问题及嵌套型随机效应混合效应模型介绍

2、嵌套型随机效应混合效应模型分析步骤及流程及模型选择

3、嵌套型随机效应混合效应模型的方差分解:ICC、varcomp及贝叶斯法

4、经典方差分解案例讲解

专题四:回归与混合效应(多水平/层次/嵌套)模型时间、空间、系统发育相关数据分析及贝叶斯实现

第一节:时间相关数据分析及贝叶斯实现

1、回归模型的方差异质性问题及解决途径

2、时间自相关分析:线性及混合效应模型及贝叶斯方法

3、时间自相关+方差异质性分析及贝叶斯实现

第二节:空间相关数据分析及贝叶斯实现

1、空间自相关概述

2、空间自相关分析:线性及混合效应模型及贝叶斯方法

第三节:系统发育相关数据分析及贝叶斯实现

1、系统发育简介:系统发育假说、系统发育信号及系统发育树

2、系统发育树及系统发育距离矩阵构建

3、系统发育信息纳入回归模型-广义最小二乘(gls)

4、系统发育信息纳入混合效应模型(lmm/glmm)及贝叶斯方法实现案例

正在上传…重新上传取消

专题五:广义可加(混合)模型(GAM/GAMM)和非线性(混合)(NLM/NLMM)模型及贝叶斯实现

1、“线性”回归的含义及非线性关系的判定

2、广义可加(混合效应)(GAM/GAMM)模型及贝叶斯实现

3、非线性(混合效应)(NLM/NLMM)模型及贝叶斯实现

Stata混合回归结果分析是对包含固定效应和随机效应混合模型进行统计分析的过程。以下是一些关键步骤和注意事项: 1. **模型设定**: - 确定模型中包含哪些固定效应和随机效应。固定效应通常是与研究中的所有个体相关的变量,而随机效应则是与部分个体相关的变量。 2. **估计方法**: - 使用Stata中的`mixed`命令来估计混合模型。该命令允许你指定固定效应和随机效应。 3. **结果解释**: - **固定效应**:固定效应的系数表示该变量对因变量的平均影响。例如,如果某个固定效应的系数显著不为零,则表示该变量对因变量有显著影响。 - **随机效应**:随机效应的方差表示该变量的变异程度。如果随机效应的方差显著不为零,则表示该变量在不同个体之间存在显著变异。 4. **模型诊断**: - 检查残差是否满足正态分布假设。 - 使用AIC(赤池信息准则)和BIC(贝叶斯信息准则)来比较不同模型的拟合优度。较低的AIC和BIC值表示更好的模型拟合。 5. **假设检验**: - 使用似然比检验(likelihood ratio test)来比较嵌套模型。例如,可以比较包含和不包含某个随机效应模型,以确定该随机效应是否显著。 6. **结果报告**: - 报告固定效应的估计值、标准误、t值和p值。 - 报告随机效应的方差成分和标准误。 - 提供模型诊断的结果,例如残差分析、AIC和BIC值。 以下是一个简单的Stata命令示例: ```stata mixed y x1 x2 || id:, reml ``` 在这个示例中,`y`是因变量,`x1`和`x2`是固定效应,`id`是随机效应的分组变量。`reml`表示使用限制性最大似然法进行估计。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值