线性基+倍增
关于线性基 想学自己去学 这里不讲
这题还可以用点分治(yjq太强啦)
倍增是卡过去的
我跑得比西方记者还慢——Wxh
题面:
4568: [Scoi2016]幸运数字
Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 656 Solved: 260
[ Submit][ Status][ Discuss]
Description
A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一。每座城市都有一个
幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征。一些旅行者希望游览 A 国。旅行者计划
乘飞机降落在 x 号城市,沿着 x 号城市到 y 号城市之间那条唯一的路径游览,最终从 y 城市起飞离开 A 国。
在经过每一座城市时,游览者就会有机会与这座城市的幸运数字拍照,从而将这份幸运保存到自己身上。然而,幸
运是不能简单叠加的,这一点游览者也十分清楚。他们迷信着幸运数字是以异或的方式保留在自己身上的。例如,
游览者拍了 3 张照片,幸运值分别是 5,7,11,那么最终保留在自己身上的幸运值就是 9(5 xor 7 xor 11)。
有些聪明的游览者发现,只要选择性地进行拍照,便能获得更大的幸运值。例如在上述三个幸运值中,只选择 5
和 11 ,可以保留的幸运值为 14 。现在,一些游览者找到了聪明的你,希望你帮他们计算出在他们的行程安排中
可以保留的最大幸运值是多少。
Input
第一行包含 2 个正整数 n ,q,分别表示城市的数量和旅行者数量。第二行包含 n 个非负整数,其中第 i 个整
数 Gi 表示 i 号城市的幸运值。随后 n-1 行,每行包含两个正整数 x ,y,表示 x 号城市和 y 号城市之间有一
条道路相连。随后 q 行,每行包含两个正整数 x ,y,表示这名旅行者的旅行计划是从 x 号城市到 y 号城市。N
<=20000,Q<=200000,Gi<=2^60
Output
输出需要包含 q 行,每行包含 1 个非负整数,表示这名旅行者可以保留的最大幸运值。
Sample Input
4 2
11 5 7 9
1 2
1 3
1 4
2 3
1 4
11 5 7 9
1 2
1 3
1 4
2 3
1 4
Sample Output
14
11
11
HINT
Source
#include<bits/stdc++.h>
using namespace std;
const int maxn=20020;
int head[maxn],n,cnt,T;
struct edge
{
int to,nxt;
}e[maxn<<1];
struct base
{
long long a[61];
void clear()
{
for(int i=0;i<=60;i++)
a[i]=0;
}
void add(long long x)
{
for(int i=60;i>=0;i--)
{
if((x>>i)&1)
{
if(!a[i])
{
a[i]=x;
break;
}
else
x^=a[i];
}
}
}
long long result()
{
long long x=0;
for(int i=60;i>=0;i--)
{
if(!((x>>i)&1))
{
x^=a[i];
}
}
return x;
}
};
base g[maxn][16];
int f[maxn][16],dep[maxn];
void addedge(int x,int y)
{
e[++cnt].to=y;
e[cnt].nxt=head[x];
head[x]=cnt;
}
void dfs(int x)
{
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(y!=f[x][0])
{
dep[y]=dep[x]+1;
f[y][0]=x;
dfs(y);
}
}
}
base merge(base x,base y)
{
base tmp=y;
for(int i=60;i>=0;i--)
{
if(x.a[i])
{
tmp.add(x.a[i]);
}
//printf("%I64d",y.result());
}
//printf("%I64d\n",y.result());
return tmp;
}
void init()
{
for(int j=1;j<=15;j++)
{
for(int i=1;i<=n;i++)
{
f[i][j]=f[f[i][j-1]][j-1];
g[i][j]=merge(g[i][j-1],g[f[i][j-1]][j-1]);//printf("%d %d %d\n",i,j-1,g[i][j-1].result());
}
}
}
void pushup(int &x,int d,base &b)
{
for(int i=15;i>=0;i--)
{
if(dep[x]-d>=(1<<i))
{
b=merge(g[x][i],b);
x=f[x][i];
}
}
return ;
}
long long solve(int x,int y)
{
base tmp;
tmp.clear();
//printf("%d %d\n",dep[x],dep[y]);
if(dep[x]<dep[y])
swap(x,y);
if(dep[x]!=dep[y])
pushup(x,dep[y],tmp);
if(x==y)
{
//printf("[%d]",tmp.result());
tmp=merge(tmp,g[x][0]);
//printf("[%d]",g[x][0].result());
return tmp.result();
}
for(int i=15;i>=0;i--)
{
if(f[x][i]!=f[y][i])
{
//printf("%d %d\n",g[x][i],g[y][i]);
tmp=merge(tmp,g[x][i]);
tmp=merge(tmp,g[y][i]);
x=f[x][i];
y=f[y][i];
}
}
//for(int i=1;i<=4;i++)
//printf("%d\n",g[i][0].result());
//printf("%d\n",g[y][0].result());
tmp=merge(tmp,g[x][0]);
//printf("%d\n",g[y][0].result());
tmp=merge(tmp,g[y][0]);
//printf("%d\n",g[y][0].result());
x=f[x][0],y=f[y][0];
tmp=merge(tmp,g[x][0]);
return tmp.result();
}
long long read()
{
long long x=0;
char ch=getchar();
while(ch>'9'||ch<'0') ch=getchar();
while(ch>='0'&&ch<='9')
{
x=x*10+ch-'0';
ch=getchar();
}
return x;
}
int readi()
{
int x=0;
char ch=getchar();
while(ch>'9'||ch<'0') ch=getchar();
while(ch>='0'&&ch<='9')
{
x=x*10+ch-'0';
ch=getchar();
}
return x;
}
int main()
{
//freopen("yoip.txt","r",stdin);
n=readi(),T=readi();
for(int i=1;i<=n;i++)
{
long long x;
x=read();
g[i][0].add(x);
}
for(int i=1;i<n;i++)
{
int x,y;
x=readi(),y=readi();
addedge(x,y);
addedge(y,x);
}
dfs(1);
init();
while(T--)
{
int x,y;
x=readi(),y=readi();
printf("%lld\n",solve(x,y));
}
}