输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。
class Solution {
public:
vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
if (input.size() < k || input.size() == 0){
return vector<int>();
}
vector<int> BigRootHeap;
BigRootHeap.push_back(0);
for (int i = 0; i < k; ++i){
BigRootHeap.push_back(input[i]);
}
HeapAdjust(BigRootHeap, 1, k);
for (int i = k; i < input.size(); ++i){
if (input[i] < BigRootHeap[1]){
BigRootHeap[1] = input[i];
HeapAdjust(BigRootHeap, 1, k);
}
}
return vector<int>(BigRootHeap.begin() + 1, BigRootHeap.end());
}
void HeapAdjust(vector<int>& A, int root, int size){
int lchild = root << 1;
int rchild = lchild + 1;
int temp = root;
if(lchild<=size&&A[temp]<A[lchild])
temp=lchild;
if(rchild<=size&&A[temp]<A[rchild])
temp=rchild;
if(temp!=root){
swap(A[root],A[temp]);
HeapAdjust(A,temp,size);
}
}
void BuildHeap(vector<int>& A, int size){
for(int i=size>>1;i>=1;--i){
HeapAdjust(A,i,size);
}
}
};
求最小的K个数,维护一个大小为K的大根堆。
void HeapAdjust(vector<int>& A, int root, int size){
int lchild = root << 1;
int rchild = lchild + 1;
int temp = root;
if(lchild<=size&&A[temp]<A[lchild])
temp=lchild;
if(rchild<=size&&A[temp]<A[rchild])
temp=rchild;
if(temp!=root){
swap(A[root],A[temp]);
HeapAdjust(A,temp,size);
}
}
该函数用递归的方法调整堆。下标从1开始,因此左孩子为root*2,右孩子为root*2+1;
选择最大的元素作为根节点,如果当前根节点值最大则不用继续调整堆。否则交换最大值和根节点的值。交换后为了保证依旧为堆,则递归调整。
void BuildHeap(vector<int>& A, int size){
for(int i=size>>1;i>=1;--i){
HeapAdjust(A,i,size);
}
}
从最后一个叶子节点的父节点开始依次向上调整。
接下来只要维护这个堆即可,每一个新的元素和堆顶元素比较,若比堆顶元素小,则删除堆顶元素,添加新元素,再重新调整堆。