堆应用(最小的K个数)

最小的K个数

输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。

class Solution {
public:
    vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
	if (input.size() < k || input.size() == 0){
		return vector<int>();
	}

	vector<int> BigRootHeap;
	BigRootHeap.push_back(0);
	for (int i = 0; i < k; ++i){
		BigRootHeap.push_back(input[i]);
	}
	HeapAdjust(BigRootHeap, 1, k);

	for (int i = k; i < input.size(); ++i){
		if (input[i] < BigRootHeap[1]){
			BigRootHeap[1] = input[i];
			HeapAdjust(BigRootHeap, 1, k);
		}
	}
	return vector<int>(BigRootHeap.begin() + 1, BigRootHeap.end());
}
    
    void HeapAdjust(vector<int>& A, int root, int size){
        int lchild = root << 1;
        int rchild = lchild + 1;
        int temp = root;
        if(lchild<=size&&A[temp]<A[lchild])
            temp=lchild;
        if(rchild<=size&&A[temp]<A[rchild])
            temp=rchild;
        if(temp!=root){
            swap(A[root],A[temp]);
            HeapAdjust(A,temp,size);
        }
    }
    
    void BuildHeap(vector<int>& A, int size){
        for(int i=size>>1;i>=1;--i){
            HeapAdjust(A,i,size);
        }
    }
};

求最小的K个数,维护一个大小为K的大根堆。

void HeapAdjust(vector<int>& A, int root, int size){
        int lchild = root << 1;
        int rchild = lchild + 1;
        int temp = root;
        if(lchild<=size&&A[temp]<A[lchild])
            temp=lchild;
        if(rchild<=size&&A[temp]<A[rchild])
            temp=rchild;
        if(temp!=root){
            swap(A[root],A[temp]);
            HeapAdjust(A,temp,size);
        }
    }
该函数用递归的方法调整堆。下标从1开始,因此左孩子为root*2,右孩子为root*2+1;

选择最大的元素作为根节点,如果当前根节点值最大则不用继续调整堆。否则交换最大值和根节点的值。交换后为了保证依旧为堆,则递归调整。


void BuildHeap(vector<int>& A, int size){
        for(int i=size>>1;i>=1;--i){
            HeapAdjust(A,i,size);
        }
    }
从最后一个叶子节点的父节点开始依次向上调整。


接下来只要维护这个堆即可,每一个新的元素和堆顶元素比较,若比堆顶元素小,则删除堆顶元素,添加新元素,再重新调整堆。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值