LeetCode 240 - 搜索二维矩阵 II

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

每行的元素从左到右升序排列。
每列的元素从上到下升序排列。

示例 1:
在这里插入图片描述
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true

示例 2:
在这里插入图片描述
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false

提示:

m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
− 1 0 9 -10^9 109 <= matrix[i][j] <= 1 0 9 10^9 109

每行的所有元素从左到右升序排列
每列的所有元素从上到下升序排列
− 1 0 9 -10^9 109 <= target <= 1 0 9 10^9 109

思路:因为二维矩阵是递增的,所以就for循环两次,取出元素与target比较,如果一致就返回true,不一致,就继续循环,然后比target大,就跳出当前子for循环,进行下一个父for循环。

 public boolean searchMatrix(int[][] matrix, int target) {
        boolean haveT = false;
        for (int i = 0 ; i < matrix.length ; i++){
            for (int j = 0 ; j < matrix[i].length ; j ++){
                if (matrix[i][j] == target){
                	//返回结果
                    return true;
                }else if (matrix[i][j] > target){
                    //下一个循环
                    break;
                }
            }
        }
        return haveT;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值