编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:
每行的元素从左到右升序排列。
每列的元素从上到下升序排列。
示例 1:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true
示例 2:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false
提示:
m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
−
1
0
9
-10^9
−109 <= matrix[i][j] <=
1
0
9
10^9
109
每行的所有元素从左到右升序排列
每列的所有元素从上到下升序排列
−
1
0
9
-10^9
−109 <= target <=
1
0
9
10^9
109
思路:因为二维矩阵是递增的,所以就for循环两次,取出元素与target比较,如果一致就返回true,不一致,就继续循环,然后比target大,就跳出当前子for循环,进行下一个父for循环。
public boolean searchMatrix(int[][] matrix, int target) {
boolean haveT = false;
for (int i = 0 ; i < matrix.length ; i++){
for (int j = 0 ; j < matrix[i].length ; j ++){
if (matrix[i][j] == target){
//返回结果
return true;
}else if (matrix[i][j] > target){
//下一个循环
break;
}
}
}
return haveT;
}