算法设计课第三周(分治2 求最近平面点对问题 C++ 102行)

宝宝,文章都被你看光了,可以给我一个赞吗?拜托拜托❤️

或者点个关注也行谢谢宝宝💕

实验3 求平面最小点距算法设计

思路和伪代码参考:【4.4分治最近点对问题】

一、【实验目的】

(1)熟悉分治算法的基本思想;

(2)理解分治算法改进的基本方法;

(3)理解不同情况下的算法时间复杂度的分析方法。

二、【实验内容】

平面上有n个点P1、P2、…Pi、…、Pn,n>1, Pi的坐标为(Xi,Yi)。请设计两种算法求距离最近的两个点及两者之间的距离,并分析算法的时间复杂度。

要求测试时,点的个数不能少于10个。

三、实验源代码

暴力法

#include <bits/stdc++.h>
using namespace std;

int minAns = 999999;

struct node
{
	int x;
	int y;
}a[12];

int main()
{
	int n;
	cin>>n;
	int x1, y1, x2, y2;
	for(int i=0;i<n;i++)
	{
		cin>>a[i].x>>a[i].y;
	}
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<n;j++)
		{
			if(i == j)
				continue;
			int nowAns = (int)sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
			if(nowAns < minAns)
			{
				minAns = min(minAns, nowAns);
				x1 = a[i].x, y1 = a[i].y;
				x2 = a[j].x, y2 = a[j].y;
			}
			
		}
	}
	cout << "The closest two points: " << '\n' << x1 << ' ' << y1 << '\n' << x2 << ' ' << y2 << endl;
	cout << minAns <<endl;
}

/*
11
2 5
4 2
5 6
7 3
9 0
1 2
1 3
3 8
0 4
7 7
6 9
*/

【运行结果】

分治法

102行,哪用什么new几个指针数组。😂两个数组搞定了,用L, R划分好区间就行

#include <bits/stdc++.h> // 引入头文件,包含了常用的C++库函数
using namespace std; // 使用标准命名空间

int minAns = 999999; // 初始化最小距离为一个较大的值
int n; // 定义点的数量
int nowAns, dotx1, dotx2, doty1, doty2; // 定义当前距离和点的坐标,用于输出

struct node{ // 定义结构体node,表示一个点
	int x; // 点的x坐标
	int y; // 点的y坐标
}a[12]; // 定义一个结构体数组,存储输入的点

bool compareX(node dot1, node dot2){ // 比较两个点的x坐标大小
	return dot1.x < dot2.x;
}

bool compareY(node dot1, node dot2){ // 比较两个点的y坐标大小
	return dot1.y < dot2.y;
}

int getDistance(int x1, int y1, int x2, int y2){ // 计算两点之间的距离
    return (int)sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}

int MinDistance(node a[], int size, int l, int r) // 递归函数,求解给定点集a中的最短距离
{	
	if(size == 3)//3个点
	{
		for(int i=0; i<2; i++)
		{
			for(int j=i+1; j<=2; j++)
			{
				nowAns = getDistance(a[i].x, a[i].y, a[j].x, a[j].y); // 计算两点之间的距离
				if(nowAns < minAns) // 如果当前距离小于最小距离
				{
					minAns = min(minAns, nowAns); // 更新最小距离
					dotx1 = a[i].x, doty1 = a[i].y; // 更新最近的两个点的坐标
					dotx2 = a[j].x, doty2 = a[j].y;
				}
			}	
		}
		return minAns; // 返回最小距离
	}
	else if(size == 2)//2个点直接算
	{
		nowAns = getDistance(a[l].x, a[l].y, a[r].x, a[r].y); // 计算两点之间的距离
		return nowAns; // 返回距离值
	}
	else if(size == 1)//只有一个点
	{
		cout << "Only one point!" << endl; // 输出提示信息
		return -1; // 返回-1表示错误
	}
	else
	{
		sort(a, a+size, compareX); // 按照x坐标对点进行排序
		int mid = (a[l].x + a[r].x) / 2; // 计算中间位置
		//分治,类似二分的分割
		int d1 = MinDistance(a, size/2, 0, mid); // 递归求解左半部分的最小距离
		int d2 = MinDistance(a, size/2, mid, size-1); // 递归求解右半部分的最小距离
		minAns = min(d1, d2); // //求δ,取左右两部分的最小值作为结果
				
		//取(mid-minAns, mid),(mid, mid+minAns)区间,按y大小排序,选出x轴上下(最多)8个点
		int Xstart = mid - minAns;
		int Xend = mid + minAns;
		vector<node> v; // 定义一个结构体向量,用于存储在区间内的点
		for (int i = l; i <= r; i++)
		{
			if(a[i].x > Xstart && a[i].x < Xend) // 如果点在区间内
				v.push_back(a[i]); // 将点加入向量
		}
		sort(v.begin(), v.end(), compareY); // 按照y坐标对点进行排序
		//从新排序好的数组中提取Xstart,Xend中所有的点
		for(int i=0; i<v.size(); i++)
		{
			node point1 = v[i]; // 取出一个点
			for(int j=i+1; j<v.size(); j++)
			{
				node point2 = v[j]; // 取出另一个点
				if(getDistance(v[i].x, v[i].y, v[j].x, v[j].y) < minAns) // 如果两点之间的距离小于最小距离
				{
					minAns = getDistance(v[i].x, v[i].y, v[j].x, v[j].y); // 更新最小距离
					dotx1 = point1.x, doty1 = point1.y; // 更新最近的两个点的坐标
					dotx2 = point2.x, doty2 = point2.y;
				}	
			}
		}
	}
	return minAns; // 返回最小距离
}

int main() // 主函数
{
	cin>>n; // 输入点的数量
	for(int i=0;i<n;i++) // 循环输入每个点的坐标
	{
		cin>>a[i].x>>a[i].y;
	}
	MinDistance(a, n, 0, 10); // 调用递归函数求解最小距离
	cout << "The closest two points: " << '\n' << dotx1 << ' ' << doty1 << '\n' << dotx2 << ' ' << doty2 << endl; // 输出最近的两个点的坐标
	cout <<	minAns << endl; // 输出最小距离
}
/*
11
2 5
4 2
5 6
7 3
9 0
1 2
1 3
3 8
0 4
7 7
6 9
*/

【运行结果】

四、实验总结

       最难的部分是分割线两边的点的计算。要规定x的范围,把范围内的点存入临时数组,再按y值大小赋值,遍历里面所有点找最小值和点

       暴力依然是最简单,但是运行时间最长。蓝桥杯比赛想不出来就先打暴力拿保底分,有时间再突破

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值