浙江理工大学 数论基础 考试 笔记

浙江理工大学 数论基础考试 个人整理笔记(Latex代码写了好几个小时,csdn的Ketex和Latex还是有些许区别,还得改一改才能用)

2 2 2个小时, 5 − 6 5-6 56个题目

一、 p 2 p2 p2 定理 1 1 1:带余除法的证明

定理 1 1 1:设 a , b a,b ab是两个整数,其中 b > 0 b>0 b>0,则存在两个唯一的整数 q q q r r r,使得

a = b q + r , 0 ⩽ r a=bq+r,0\leqslant r a=bq+r0r

成立

证明:作整数序列 . . . , − 3 b , − 2 b , − b , 0 , b , 2 b , 3 b , . . . ...,-3b,-2b,-b,0,b,2b,3b,... ...,3b,2b,b,0,b,2b,3b,...

则a必定在某两项之间,即存在 q q q使得
q b ⩽ a < ( q + 1 ) b ​ qb\leqslant a <(q+1)b​ qba<(q+1)b

成立,令 a − b q = r a-bq=r abq=r,则结论成立
设 q 1 , r 1 是 另 一 对 整 数 b q 1 + r 1 = b q + r ∴ b ( q − q 1 ) = r 1 − r ∴ b ∣ ( r 1 − r ) 假 设 r − r 1 ≠ 0 ∴ ∣ b ∣ ⩽ ∣ r 1 − r ∣ ⩽ b − 1 ∴ ∣ b ∣ < b 矛 盾 ∴ q = q 1 证 毕 \begin{aligned} && &设q_{1},r_{1}是另一对整数\\ && &bq_{1}+r_{1}=bq+r\\ && &\therefore b(q-q_{1}) = r_{1}-r\\ && &\therefore b|(r_{1}-r)\\ && &假设r-r_{1}\not = 0\\ && &\therefore |b|\leqslant|r_{1}-r|\leqslant b-1\\ && &\therefore |b|<b矛盾\\ && &\therefore q = q_{1}\\ && &证毕\\ \end{aligned} q1r1bq1+r1=bq+rb(qq1)=r1rb(r1r)rr1=0br1rb1b<bq=q1

二、 p 7 p7 p7 定理 1 1 1 ( a , b ) [ a , b ] = a b (a,b)[a,b]=ab (a,b)[a,b]=ab

定理 1 1 1:设 a , b a,b ab是任给的两个正整数,则

[ a , b ] = a b ( a , b ) [a, b]=\frac{ab}{(a,b)} [a,b]=(a,b)ab

证明: i f f iff iff a b [ a , b ] ⩽ ( a , b ) 且 ( a , b ) ⩽ a b [ a , b ] \frac{ab}{[a,b]}\leqslant (a,b) 且(a,b)\leqslant \frac{ab}{[a,b]} [a,b]ab(a,b)(a,b)[a,b]ab

∵ a b [ a , b ] , [ a , b ] b ∈ Z ​ ∵ a = a b [ a , b ] [ a , b ] b ​ b = a b [ a , b ] [ a , b ] a ​ ∴ a b [ a , b ] ∣ a 且 a b [ a , b ] ∣ b ​ ∴ a b [ a , b ] ⩽ ( a , b ) ​ ∵ a b ( a , b ) = a ( b ( a , b ) ) ​ ∴ a ∣ a b ( a , b ) ​ 同 理 有 b ∣ a b ( a , b ) ​ ∴ a b ( a , b ) = k [ a , b ] ​ ∴ [ a , b ] = a b ( a , b ) ​ 证 毕 \begin{aligned} && &\because\frac{ab}{[a,b]},\frac{[a,b]}{b} \in \mathbb{Z}​\\ && &\because a= \frac{ab}{[a,b]} \frac{[a,b]}{b}​\\ && &b= \frac{ab}{[a,b]} \frac{[a,b]}{a}​\\ && &\therefore \frac{ab}{[a,b]}|a且\frac{ab}{[a,b]}|b​\\ && &\therefore \frac{ab}{[a,b]}\leqslant (a,b)​\\ && &\because \frac{ab}{(a,b)}=a\bigg(\frac{b}{(a,b)}\bigg)​\\ && &\therefore a|\frac{ab}{(a,b)}​\\ && &同理有\\ && &b|\frac{ab}{(a,b)}​\\ && &\therefore \frac{ab}{(a,b)}=k[a,b]​\\ && &\therefore [a, b]=\frac{ab}{(a,b)}​\\ && &证毕\\ \end{aligned} [a,b]ab,b[a,b]Za=[a,b]abb[a,b]b=[a,b]aba[a,b][a,b]aba[a,b]abb[a,b]ab(a,b)(a,b)ab=a((a,b)b)a(a,b)abb(a,b)ab(a,b)ab=k[a,b][a,b]=(a,b)ab

三、 p 9 p9 p9 质因数唯一分解定理

引理 1 1 1:若 a ∈ Z , a ⩾ 2 a\in \mathbb{Z}, a \geqslant 2 aZ,a2, q ⩾ 2 q\geqslant 2 q2 a a a的除1以外的最小的因子,且当 a a a是合数时, q ⩽ a q\leqslant \sqrt{a} qa

证明:假设 q q q是合数, q = d d ′ , 2 ⩽ d , d ′ < q q=dd^{'} ,2\leqslant d,d^{'}<q q=dd,2d,d<q

∴ d ∣ q , q ∣ a \therefore d|q, q|a dq,qa

∴ d ∣ a \therefore d|a da

∴ q 是 素 数 \therefore q是素数 q

a = q q ′ a=qq^{'} a=qq

∴ q ⩽ q ′ \therefore q\leqslant q^{'} qq

∴ q 2 ⩽ q q ′ = q \therefore q^{2} \leqslant qq^{'}=q q2qq=q

∴ q ⩽ a \therefore q \leqslant \sqrt{a} qa

证毕

引理 2 2 2 p ∈ P p \in \mathcal{P} pP ∀ a ∈ Z \forall a \in \mathbb{Z} aZ,则 p ∣ a p|a pa ( p , a ) = 1 (p,a)=1 (p,a)=1

证明:

∵ ( p , a ) ∣ p \because (p,a)|p (p,a)p p p p是素数

∴ ( p , a ) = 1 或 ( p , a ) = p \therefore (p,a)=1或(p,a)=p (p,a)=1(p,a)=p

引理3: p ∈ P , p ∣ a b p \in \mathcal{P},p|ab pPpab,则 p ∣ a p|a pa p ∣ b p|b pb

p ∣ a p|a pa

p ∤ a p\nmid a pa p ∣ b p|b pb

证毕

定理 1 1 1 ∀ a ⩾ 2 , ∃ p 1 ⩽ p 2 ⩽ . . . ⩽ p n \forall a \geqslant 2, \exists p_{1}\leqslant p_{2}\leqslant ...\leqslant p_{n} a2,p1p2...pn,素数 a = p 1 p 2 ⋅ ⋅ ⋅ p n a=p_{1}p_{2}···p_{n} a=p1p2pn,且若 ∃ q 1 ⩽ q 2 ⩽ . . . ⩽ q n \exists q_{1}\leqslant q{2}\leqslant ...\leqslant q_{n} q1q2...qn使得 a = q 1 q 2 ⋅ ⋅ ⋅ q n a=q_{1}q_{2}···q_{n} a=q1q2qn,则 m = n , p i = q i m=n,p_{i}=q_{i} m=npi=qi

证明:

a = 2 a=2 a=2成立, a a a是素数成立

a a a是合数, ∃ b , c \exists b,c b,c使得 a = b c a=bc a=bc

p 1 p 2 ⋅ ⋅ ⋅ p n = q 1 q 2 ⋅ ⋅ ⋅ q n p_{1}p_{2}···p_{n}=q_{1}q_{2}···q_{n} p1p2pn=q1q2qn

∴ p 1 = q k \therefore p_{1}=q_{k} p1=qk q 1 = p l q_{1}=p_{l} q1=pl

∴ p 1 ⩽ p l = q 1 , q 1 ⩽ q k = p 1 \therefore p_{1}\leqslant p_{l}=q_{1},q_{1}\leqslant q_{k}=p_{1} p1pl=q1q1qk=p1

∴ p 1 ⩽ q 1 , q 1 ⩽ p q \therefore p_{1}\leqslant q_{1},q_{1}\leqslant p_{q} p1q1q1pq

∴ p 1 = q q \therefore p_{1}=q_{q} p1=qq

同理 p i = q i , m = n p_{i}=q_{i},m=n pi=qim=n

证毕

四、 p 13 p13 p13 定理 1 1 1:素数个数是无穷的

定理 1 1 1:素数的个数是无穷的

证明:假设素数的个数是有限的,那么设 p 1 = 2 , p 2 = 3 , . . . , p k p_{1}=2,p_{2}=3,...,p_{k} p1=2,p2=3,...,pk是全体素数,再设 N = p 1 p 2 ⋅ ⋅ ⋅ p k + 1 N=p_{1}p_{2}···p_{k}+1 N=p1p2pk+1

∴ ∃ q ⩾ 2 \therefore \exists q \geqslant 2 q2,使得 q ∣ N q|N qN

∵ p i ∤ N \because p_{i}\nmid N piN

∴ N \therefore N N是素数,与假设矛盾

故素数的个数是无穷的

证毕

五、 p 34 p34 p34 定理 6 6 6:威尔逊定理

定理 6 6 6:设 p p p是一个素数,则
( p − 1 ) ! + 1 ≡ 0 ( m o d p ) (p-1)!+1 \equiv 0\pmod p (p1)!+10(modp)
证明:

p = 2 , 3 p=2,3 p=2,3时成立,设 p > 3 p>3 p>3是一个奇素数, S = { 2 , 3 , . . . , p − 2 } , α ∈ S S=\{2,3,...,p-2\},\alpha \in S S={2,3,...,p2},αS

∵ ( a , p ) = 1 \because (a,p)=1 (a,p)=1

∴ ∃ m , n 使 得 a m + p n = 1 \therefore \exists m,n使得am+pn=1 m,n使am+pn=1有解

∴ a m ≡ 1 ( m o d p ) \therefore am\equiv 1\pmod p am1(modp)

a ‾ = 〈 m 〉 p \overline{a}=〈m〉_{p} a=mp

易 知 a ‾ ≠ 0 , a ‾ ≠ 1 , a ‾ ≠ p − 1 易知\overline{a}\not=0,\overline{a}\not=1,\overline{a}\not=p-1 a=0,a=1,a=p1

假设 a = a ‾ a=\overline{a} a=a

∴ a a ‾ ≡ 1 ( m o d p ) \therefore a\overline{a}\equiv1\pmod p aa1(modp)

∴ a 2 ≡ 1 ( m o d p ) \therefore a^{2}\equiv 1\pmod p a21(modp)

∴ p ∣ ( a − 1 ) ( a + 1 ) \therefore p|(a-1)(a+1) p(a1)(a+1)

∵ 1 ⩽ a − 1 ⩽ p − 3 , 3 ⩽ a + 1 ⩽ p − 1 \because 1\leqslant a-1 \leqslant p-3 ,3\leqslant a+1 \leqslant p-1 1a1p3,3a+1p1

∴ p \therefore p p a − 1 , a + 1 a-1,a+1 a1,a+1互质,与 p p p是素数矛盾

a ≠ a ‾ a\not=\overline{a} a=a

b ∈ S , b ≠ a , b ≠ a ‾ b\in S,b\not=a,b\not=\overline{a} bS,b=a,b=a

∃ b ‾ ∈ S \exists \overline{b}\in S bS使得 b b ‾ ≡ 1 ( m o d p ) b\overline{b}\equiv 1\pmod p bb1(modp)

假设 b ‾ = a \overline{b}=a b=a

∴ b b ‾ = a b ‾ \therefore b\overline{b}=a\overline{b} bb=ab

∵ ∴ b b ‾ = a b ‾ ≡ 1 ≡ a a ‾ ( m o d p ) \because \therefore b\overline{b}=a\overline{b} \equiv 1 \equiv a\overline{a}\pmod p bb=ab1aa(modp)

∴ a b ‾ ≡ a a ‾ ( m o d p ) \therefore a\overline{b}\equiv a\overline{a}\pmod p abaa(modp)

∴ p ∣ a ( b ‾ − a ‾ ) \therefore p|a(\overline{b}-\overline{a}) pa(ba)

∵ ( p , a ) = 1 , ( p , ( b ‾ − a ‾ ) ) = 1 \because (p,a)=1,(p,(\overline{b}-\overline{a}))=1 (p,a)=1,(p,(ba))=1,矛盾

b ‾ ≠ a \overline{b}\not=a b=a

S S S中的数可分为 p − 3 2 \frac{p-3}{2} 2p3对,每一对 a a ‾ ≡ 1 ( m o d p ) a\overline{a}\equiv1\pmod p aa1(modp)

2 ⋅ 3 ⋅ . . . ⋅ ( p − 2 ) ≡ 1 ( m o d p ) 2·3·...·(p-2)\equiv 1\pmod p 23...(p2)1(modp)

∴ ( p − 1 ) ! ≡ − 1 ( m o d p ) \therefore (p-1)!\equiv-1\pmod p (p1)!1(modp)

( p − 1 ) ! + 1 ≡ 0 ( m o d p ) (p-1)!+1\equiv0\pmod p (p1)!+10(modp)

证毕

六、 p 37 p37 p37 定理 3 3 3 + 定理 4 4 4:欧拉定理

定义:欧拉函数 φ ( n ) \varphi(n) φ(n)是一个定义在正整数上的函数, φ ( n ) \varphi(n) φ(n)的值等于序列 0 , 1 , 2 , . . . , n − 1 0,1,2,...,n-1 0,1,2,...,n1中与 n n n互质的个数

p 31 p31 p31定理 3 3 3:若 a c ≡ b c ( m o d m ) ac\equiv bc \pmod m acbc(modm),且若 ( m , c ) = d (m,c)=d (m,c)=d,则
a ≡ b ( m o d m d ) a\equiv b \pmod{\frac{m}{d}} ab(moddm)
证明:因为 m ∣ c ( a − b ) m|c(a-b) mc(ab),故 m d ∣ c d ( a − b ) \frac{m}{d}|\frac{c}{d}(a-b) dmdc(ab),又因为 ( m d , c d ) = 1 (\frac{m}{d},\frac{c}{d})=1 (dm,dc)=1,所以 m d ∣ ( a − b ) \frac{m}{d}|(a-b) dm(ab)

证毕

定理 1 1 1:模 m m m的一组缩系含有 φ ( m ) \varphi(m) φ(m)个数

定理 2 2 2:若 a 1 , . . . , a φ ( m ) a_{1},...,a_{\varphi(m)} a1,...,aφ(m) φ ( m ) \varphi(m) φ(m)个与 m m m互质的整数,则 a 1 , . . . , a φ ( m ) a_{1},...,a_{\varphi(m)} a1,...,aφ(m)是模 m m m的一组缩系的充分必要条件是它们两两对模 m m m不同余

定理 3 3 3:若 ( a , m ) = 1 (a,m)=1 (a,m)=1, x x x通过模 m m m的缩系,则 a x ax ax也通过模 m m m的缩系

证明:当 x x x通过模 m m m的缩系,则 a x ax ax通过模 φ ( m ) \varphi(m) φ(m)个整数,由于 ( a , m ) = 1 , ( x , m ) = 1 (a,m)=1,(x,m)=1 (a,m)=1,(x,m)=1,故 ( a x , m ) = 1 (ax,m)=1 (ax,m)=1.若 a x 1 ≡ a x 2 ( m o d m ) ax_{1}\equiv ax_{2} \pmod m ax1ax2(modm) ,可得 x 1 ≡ x 2 ( m o d m ) x_{1}\equiv x_{2}\pmod m x1x2(modm),与所设 x x x通过模 m m m的缩系矛盾,故 a x ax ax通过模 m m m的缩系

定理 4 4 4:设 m > 1 , ( a , m ) = 1 m>1,(a,m)=1 m>1,(a,m)=1,则
a φ ( m ) ≡ 1 ( m o d m ) a^{\varphi{(m)}}\equiv 1\pmod m aφ(m)1(modm)
证明:设 r 1 , r 2 , . . . , r φ ( m ) r_{1},r_{2},...,r_{\varphi{(m)}} r1,r2,...,rφ(m)是模 m m m的一组缩系,则由定理3, a r 1 , a r 2 , . . . , a r φ ( m ) ar_{1},ar_{2},...,ar_{\varphi{(m)}} ar1,ar2,...,arφ(m)也是模 m m m的一组缩系,故
( a r 1 ) ( a r 2 ) ⋅ ⋅ ⋅ ( a r φ ( m ) ) ≡ r 1 r 2 ⋅ ⋅ ⋅ r φ ( m ) ( m o d m ) (ar_{1})(ar_{2})···(ar_{\varphi(m)})\equiv r_{1}r_{2}···r_{\varphi(m)}\pmod m (ar1)(ar2)(arφ(m))r1r2rφ(m)(modm)

a φ ( m ) r 1 r 2 ⋅ ⋅ ⋅ r φ ( m ) ≡ r 1 r 2 ⋅ ⋅ ⋅ r φ ( m ) ( m o d m ) a^{\varphi(m)}r_{1}r_{2}···r_{\varphi(m)}\equiv r_{1}r_{2}···r_{\varphi(m)}\pmod m aφ(m)r1r2rφ(m)r1r2rφ(m)(modm)
由于
( r i , m ) = 1 , i = 1 , 2 , . . . , φ ( m ) (r_{i},m)=1,\quad i=1,2,...,\varphi(m) (ri,m)=1,i=1,2,...,φ(m)

( r 1 , r 2 , . . . , r φ ( m ) ) = 1 (r_{1},r_{2},...,r_{\varphi(m)})=1 (r1,r2,...,rφ(m))=1

根据 p 31 p31 p31定理 3 3 3,和上述两个结论可得
a φ ( m ) ≡ 1 ( m o d m ) a^{\varphi(m)}\equiv 1\pmod m aφ(m)1(modm)
证毕

七、 p 43 p43 p43 定理 1 1 1:拉格朗日定理

定理 1 1 1:设 p p p是一个素数,
f ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x 1 + a 0 , n > 0 , a n ≠ 0 ( m o d p ) f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x^{1}+a_{0},\quad n>0,a_{n}\not=0\pmod p f(x)=anxn+an1xn1+...+a1x1+a0,n>0,an=0(modp)
是一个整系数多项式,则同余式
f ( x ) ≡ 0 ( m o d p ) f(x)\equiv 0\pmod p f(x)0(modp)
最多有 n n n个解

证明:使用数学归纳法证明,当 n n n等于1时,设一次同余式为
a 1 x + a 0 ≡ 0 ( m o d p ) ,    p ∤ a 1 a_{1}x+a_{0}\equiv 0\pmod p,\;p\nmid a_{1} a1x+a00(modp),pa1
因为 p ∤ a 1 p\nmid a_{1} pa1,故恰有一解,假设当同余式次数为 n − 1 n-1 n1时成立,当次数为 n n n时,若 n ⩾ p n\geqslant p np时结论显然成立,故设 n ⩽ p − 1 n\leqslant p-1 np1,利用反证法,假设同余式有 n + 1 n+1 n+1个解
x 0 , x 1 , . . . , x n , x i ≠ x j ( m o d p ) , 0 ⩽ i < j ⩽ n x_{0},x_{1},...,x_{n},\quad x_{i}\not=x_{j}\pmod p,\quad0\leqslant i<j\leqslant n x0,x1,...,xn,xi=xj(modp),0i<jn
此时出现矛盾,因为
f ( x ) − f ( x 0 ) = ∑ k = 1 n a k ( x k − x 0 k ) = ( x − x 0 ) g ( x ) f(x)-f(x_{0})=\sum_{k=1}^{n}a_{k}(x^{k}-x_{0}^{k})=(x-x_{0})g(x) f(x)f(x0)=k=1nak(xkx0k)=(xx0)g(x)
g ( x ) g(x) g(x)是首项系数为 a n a_{n} an n − 1 n-1 n1次整系数多项式,因此
f ( x k ) − f ( x 0 ) = ( x k − x 0 ) g ( x k ) ≡ 0 ( m o d p ) f(x_{k})-f(x_{0})=(x_{k}-x_{0})g(x_{k})\equiv 0\pmod p f(xk)f(x0)=(xkx0)g(xk)0(modp)
但如 k > 0 k>0 k>0 x k − x 0 ≢ 0 ( m o d p ) x_{k}-x_{0}\not\equiv 0 \pmod p xkx00(modp),故 n − 1 n-1 n1次同余式 g ( x ) ≡ 0 ( m o d p ) g(x)\equiv 0 \pmod p g(x)0(modp) n n n个解,与假设矛盾

证毕

八、 p 46 p46 p46 孙子剩余定理

x ≡ b 1 ( m o d m 1 ) x ≡ b 2 ( m o d m 2 ) . . . x ≡ b k ( m o d m k ) (1) \begin{aligned} && & x\equiv b_{1}\pmod{m_{1}}\\ && & x\equiv b_{2}\pmod{m_{2}}\\ && & \quad\quad\quad...\\ && & x\equiv b_{k}\pmod{m_{k}}\tag{1} \end{aligned} xb1(modm1)xb2(modm2)...xbk(modmk)(1)

定理 1 1 1:设 m 1 , m 2 , . . . , m k m_{1},m_{2},...,m_{k} m1,m2,...,mk k k k个两两互质的正整数, m = m 1 ⋅ ⋅ ⋅ m k , m = m i M i ( i = 1 , . . . , k ) m=m_{1}···m_{k},m=m_{i}M_{i}(i=1,...,k) m=m1mk,m=miMi(i=1,...,k).

则同余式组) ( 1 ) (1) (1)有唯一解
x ≡ M 1 ′ M 1 b 1 + M 2 ′ M 2 b 2 + . . . + M k ′ M k b k ( m o d m ) (2) x\equiv M_{1}^{'}M_{1}b_{1}+M_{2}^{'}M_{2}b_{2}+...+M_{k}^{'}M_{k}b_{k}\pmod m\tag{2} xM1M1b1+M2M2b2+...+MkMkbk(modm)(2)
其中
M i ′ M i ≡ 1 ( m o d m i ) ( i = 1 , . . . , k ) M_{i}^{'}M_{i}\equiv 1\pmod{m_{i}}(i=1,...,k) MiMi1(modmi)(i=1,...,k)
证明:

∵ ( m i , m j ) = 1 , i ≠ j \because(m_{i},m_{j})=1,i\not=j (mi,mj)=1,i=j

∴ ( M i , m i ) = 1 \therefore (M_{i},m_{i})=1 (Mi,mi)=1

p 40 p40 p40定理1:设 ( a , m ) = 1 , m > 0 (a,m)=1,m>0 (a,m)=1,m>0,则同余式
a x ≡ b ( m o d m ) ax\equiv b\pmod m axb(modm)
恰有一个解

证明:因为 1 , 2 , . . . , m 1,2,...,m 1,2,...,m组成一组模 m m m的完全剩余系, ( a , m ) = 1 (a,m)=1 (a,m)=1,故 a , 2 a , . . . , m a a,2a,...,ma a,2a,...,ma也组成模 m m m的一组完全剩余系,故其中恰有一个数设为 a j a_{j} aj,适合 a j ≡ b ( m o d m ) , x ≡ j ( m o d m ) a_{j}\equiv b\pmod m,x\equiv j\pmod m ajb(modm),xj(modm)就是同余式的唯一解

p 40 p40 p40定理 1 1 1可知对每一对 M i M_{i} Mi,存在使得 M i ′ M i ≡ 1 ( m o d m i ) M_{i}^{'}M_{i}\equiv 1\pmod{m_{i}} MiMi1(modmi),因为 m = m i M i m=m_{i}M_{i} m=miMi,因此 m j ∣ M i , i ≠ j m_{j}|M_{i},i\not=j mjMi,i=j,故
∑ j = 1 k M j ′ M j b j ≡ M i ′ M i b i ≡ b i ( m o d m i ) , i = 1 , 2 , . . . , k \sum_{j=1}^{k}M_{j}^{'}M_{j}b_{j}\equiv M_{i}^{'}M_{i}b_{i}\equiv b_{i}\pmod{m_{i}},\quad i=1,2,...,k j=1kMjMjbjMiMibibi(modmi),i=1,2,...,k
( 2 ) (2) (2)为同余式组的解

x 1 , x 2 x_{1},x_{2} x1,x2是适合同余式组的任意两个整数,则
x 1 ≡ x 2 ( m o d m i ) ( i = 1 , 2 , . . . , k ) x_{1}\equiv x_{2}\pmod{m_{i}}(i=1,2,...,k) x1x2(modmi)(i=1,2,...,k)
因为 m i , m j = 1 , i ≠ j m_{i},m_{j}=1,i\not=j mi,mj=1,i=j,于是 x 1 ≡ x 2 ( m o d m ) x_{1}\equiv x_{2}\pmod m x1x2(modm),故同余式组仅有唯一解 ( 2 ) (2) (2)

九、莫比乌斯函数定义

定义:莫比乌斯函数 μ ( n ) \mu(n) μ(n),当 n = 1 n=1 n=1时, μ ( 1 ) = 1 \mu(1)=1 μ(1)=1;当 n > 1 n>1 n>1时,设 n = p 1 l 1 ⋅ ⋅ ⋅ p s l s n=p_{1}^{l_{1}}···p_{s}^{l_{s}} n=p1l1psls n n n的标准分解式,则 μ ( n ) \mu(n) μ(n)定义为
μ ( n ) = { ( − 1 ) s 当  l 1 = . . . = l s = 1 时 0 当 某 个 l j > 1 ( 1 ⩽ j ⩽ s ) 时 \mu(n) = \begin{cases} (-1)^{s} & \quad \text{当 } l_{1}=...=l_{s}=1时\\ 0 & \quad \text{当}某个l_{j}>1(1\leqslant j \leqslant s)时 \end{cases} μ(n)={(1)s0 l1=...=ls=1lj>1(1js)

十、 p 69 p69 p69 定理 1 1 1(上课方法证明)

定理 1 1 1:如果 n ⩾ 1 n\geqslant 1 n1,则有
∑ d ∣ n μ ( d ) = [ 1 n ] \sum_{d|n}\mu(d)=\bigg[\frac{1}{n}\bigg] dnμ(d)=[n1]
证明:

n = 1 n=1 n=1 μ ( 1 ) = 1 \mu(1)=1 μ(1)=1成立

n ⩾ 2 n\geqslant 2 n2 n = p 1 l 1 ⋅ ⋅ ⋅ p s l s n=p_{1}^{l_{1}}···p_{s}^{l_{s}} n=p1l1psls,若 d ∣ n d|n dn,则 d = p 1 α 1 ⋅ ⋅ ⋅ p s α s , ( 0 ⩽ α i ⩽ l i ) d=p_{1}^{\alpha_{1}}···p_{s}^{\alpha_{s}},(0\leqslant \alpha_{i}\leqslant l_{i}) d=p1α1psαs,(0αili)
∑ d ∣ n μ ( d ) = ∑ α 1 = 0 1 ⋅ ⋅ ⋅ ∑ α s = 0 1 μ ( p 1 α 1 ⋅ ⋅ ⋅ p s α s ) = ∑ α 1 = 0 1 ⋅ ⋅ ⋅ ∑ α s = 0 1 μ ( p 1 α 1 ) ⋅ ⋅ ⋅ μ ( p s α s ) = ∑ α 1 = 0 1 μ ( p 1 α 1 ) ⋅ ⋅ ⋅ ∑ α s = 0 1 μ ( p s α s ) = ( μ ( 1 ) + μ ( p 1 ) ) ⋅ ⋅ ⋅ ( μ ( 1 ) + μ ( p s ) ) = ( 1 + ( − 1 ) ) ⋅ ⋅ ⋅ ( 1 + ( − 1 ) ) = 0 \begin{aligned} && & \sum_{d|n}\mu(d)\\ && &=\sum_{\alpha_{1}=0}^{1}···\sum_{\alpha_{s}=0}^{1}\mu(p_{1}^{\alpha_{1}}···p_{s}^{\alpha_{s}})\\ && &=\sum_{\alpha_{1}=0}^{1}···\sum_{\alpha_{s}=0}^{1}\mu(p_{1}^{\alpha_{1}})···\mu(p_{s}^{\alpha_{s}})\\ && &=\sum_{\alpha_{1}=0}^{1}\mu(p_{1}^{\alpha_{1}})···\sum_{\alpha_{s}=0}^{1}\mu(p_{s}^{\alpha_{s}})\\ && &=\Big(\mu(1)+\mu(p_{1})\Big)···\Big(\mu(1)+\mu(p_{s})\Big)\\ && &=\Big(1+(-1)\Big)···\Big(1+(-1)\Big)\\ && &=0 \end{aligned} dnμ(d)=α1=01αs=01μ(p1α1psαs)=α1=01αs=01μ(p1α1)μ(psαs)=α1=01μ(p1α1)αs=01μ(psαs)=(μ(1)+μ(p1))(μ(1)+μ(ps))=(1+(1))(1+(1))=0

p p p为素数,则 μ ( p ) = − 1 \mu(p)=-1 μ(p)=1

证毕

十一、 p 78 p78 p78 莫比乌斯变换

定义:若数论函数 f ( n ) f(n) f(n) g ( n ) g(n) g(n)适合
f ( n ) = ∑ d ∣ n g ( d ) = ∑ d ∣ n g ( n d ) f(n)=\sum_{d|n}g(d)=\sum_{d|n}g\Big(\frac{n}{d}\Big) f(n)=dng(d)=dng(dn)
f ( n ) 为 f(n)为 f(n)g(n)的莫比乌斯变换,而 g ( n ) g(n) g(n)为$f(x)的莫比乌斯逆变换

十二、 p 78 p78 p78 定理及冯・曼哥特函数 Λ ( n ) \Lambda(n) Λ(n)

定理:若任意两个数论函数 f ( n ) f(n) f(n) g ( n ) g(n) g(n)满足等式
f ( n ) = ∑ d ∣ n g ( n d ) (1) f(n)=\sum_{d|n}g\Big(\frac{n}{d}\Big)\tag{1} f(n)=dng(dn)(1)
则有
g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) (2) g(n)=\sum_{d|n}\mu(d)f\Big(\frac{n}{d}\Big)\tag{2} g(n)=dnμ(d)f(dn)(2)
反之亦然

证明:

f ( n ) f(n) f(n) g ( n ) g(n) g(n)满足 ( 1 ) (1) (1),则
∑ d ∣ n μ ( d ) f ( n d ) = ∑ d ∣ n μ ( d ) ∑ d ′ ∣ n g ( d ′ ) = ∑ d d ′ ∣ n μ ( d ) g ( d ′ ) = ∑ d ′ ∣ n ∑ d ∣ n d ′ μ ( d ) g ( d ′ ) = ∑ d ′ ∣ n g ( d ′ ) ∑ d ∣ n d ′ μ ( d ) = g ( n ) \begin{aligned} && &\sum_{d|n}\mu(d)f\Big(\frac{n}{d}\Big)=\sum_{d|n}\mu(d)\sum_{d^{'}|n}g(d^{'})=\sum_{dd^{'}|n}\mu(d)g(d^{'})\\ && &=\sum_{d^{'}|n}\sum_{d\big|\frac{n}{d^{'}}}\mu(d)g(d^{'})=\sum_{d^{'}|n}g(d^{'})\sum_{d\big|\frac{n}{d^{'}}}\mu(d)=g(n) \end{aligned} dnμ(d)f(dn)=dnμ(d)dng(d)=ddnμ(d)g(d)=dnddnμ(d)g(d)=dng(d)ddnμ(d)=g(n)

最后一个等式用到 p 69 p69 p69定理 1 1 1
∑ d ′ ∣ n g ( d ′ ) ∑ d ∣ n d ′ μ ( d ) = ∑ d ′ ∣ n g ( d ′ ) [ d ′ n ] = ∑ d ′ = n g ( d ′ ) [ d ′ n ] + ∑ d ′ ≠ n g ( d ′ ) [ d ′ n ] = g ( n ) + 0 = g ( n ) \begin{aligned} && &\sum_{d^{'}|n}g(d^{'})\sum_{d\big|\frac{n}{d^{'}}}\mu(d)\\ && &=\sum_{d^{'}|n}g(d^{'})\bigg[\frac{d^{'}}{n}\bigg]\\ && &=\sum_{d^{'}=n}g(d^{'})\bigg[\frac{d^{'}}{n}\bigg]+\sum_{d^{'}\not=n}g(d^{'})\bigg[\frac{d^{'}}{n}\bigg]\\ && &=g(n)+0=g(n) \end{aligned} dng(d)ddnμ(d)=dng(d)[nd]=d=ng(d)[nd]+d=ng(d)[nd]=g(n)+0=g(n)

f ( n ) f(n) f(n) g ( n ) g(n) g(n)满足 ( 2 ) (2) (2),则
∑ d ∣ n g ( d ′ ) = ∑ d ∣ n g ( n d ) = ∑ d ∣ n ∑ d ′ ∣ n d μ ( n d d ′ ) f ( d ′ ) = ∑ d d ′ ∣ n μ ( n d d ′ ) f ( d ′ ) = ∑ d ′ ∣ n f ( d ′ ) ∑ d ∣ n d ′ μ ( n d d ′ ) = f ( n ) \sum_{d|n}g(d^{'})=\sum_{d|n}g\Big(\frac{n}{d}\Big)=\sum_{d|n}\sum_{d^{'}\big|\frac{n}{d}}\mu\Big(\frac{n}{dd^{'}}\Big)f(d^{'})\\ =\sum_{dd^{'}|n}\mu\Big(\frac{n}{dd^{'}}\Big)f(d^{'})=\sum_{d^{'}|n}f(d^{'})\sum_{d\big|\frac{n}{d^{'}}}\mu\Big(\frac{n}{dd^{'}}\Big)=f(n) dng(d)=dng(dn)=dnddnμ(ddn)f(d)=ddnμ(ddn)f(d)=dnf(d)ddnμ(ddn)=f(n)
证毕

冯・曼哥特函数 Λ ( n ) \Lambda(n) Λ(n)定义
Λ ( n ) = { l o g   p n = p m , m ⩾ 1 , p 是 素 数 0 n 为 其 他 情 况 \Lambda(n)= \begin{cases} log\:p & \quad n=p^{m},m\geqslant 1,p是素数\\ 0 & \quad n为其他情况 \end{cases} Λ(n)={logp0n=pm,m1,pn

设 n = p 1 l 1 ⋅ ⋅ ⋅ p k l k 是 n 的 标 准 分 解 式 ∑ d ∣ n Λ ( n ) = ∑ s 1 = 0 l 1 ⋅ ⋅ ⋅ ∑ s k = 0 l k Λ ( p 1 s 1 ⋅ ⋅ ⋅ p k s k ) = ∑ s 1 = 1 l 1 Λ ( p 1 s 1 ) + ⋅ ⋅ ⋅ + ∑ s k = 1 l k Λ ( p k s k ) = ∑ s 1 = 1 l 1 l o g   p 1 + ⋅ ⋅ ⋅ + ∑ s k = 1 l k l o g   p k = l 1 l o g   p 1 + ⋅ ⋅ ⋅ + l k l o g   p k = l o g   n \begin{aligned} && &设n=p_{1}^{l_{1}}···p_{k}^{l_{k}}是n的标准分解式\\ && &\sum_{d|n}\Lambda(n)=\sum_{s_{1}=0}^{l_{1}}···\sum_{s_{k}=0}^{l_{k}}\Lambda(p_{1}^{s_{1}}···p_{k}^{s_{k}})\\ && &=\sum_{s_{1}=1}^{l_{1}}\Lambda(p_{1}^{s_{1}})+···+\sum_{s_{k}=1}^{l_{k}}\Lambda(p_{k}^{s_{k}})\\ && &=\sum_{s_{1}=1}^{l_{1}}log\:p_{1}+···+\sum_{s_{k}=1}^{l_{k}}log\:p_{k}\\ && &=l_{1}log\:p_{1}+···+l_{k}log\:p_{k}=log\:n \end{aligned} n=p1l1pklkndnΛ(n)=s1=0l1sk=0lkΛ(p1s1pksk)=s1=1l1Λ(p1s1)++sk=1lkΛ(pksk)=s1=1l1logp1++sk=1lklogpk=l1logp1++lklogpk=logn

l o g   n log\:n logn Λ ( n ) \Lambda(n) Λ(n)的莫比乌斯变换

Λ ( n ) \Lambda(n) Λ(n) l o g   n log\:n logn的莫比乌斯变换,故
Λ ( n ) = ∑ d ∣ n μ ( d ) l o g   n d = l o g   n ∑ d ∣ n μ ( d ) − ∑ d ∣ n μ ( d ) l o g   d = I ( n ) l o g   n − ∑ d ∣ n μ ( d ) l o g   d = ∑ d ∣ n − μ ( d ) l o g   d \begin{aligned} && &\Lambda(n)=\sum_{d|n}\mu(d)log\:\frac{n}{d}\\ && &=log\:n\sum_{d|n}\mu(d)-\sum_{d|n}\mu(d)log\:d\\ && &=I(n)log\:n-\sum_{d|n}\mu(d)log\:d\\ && &=\sum_{d|n}-\mu(d)log\:d \end{aligned} Λ(n)=dnμ(d)logdn=logndnμ(d)dnμ(d)logd=I(n)logndnμ(d)logd=dnμ(d)logd
Λ ( n ) \Lambda(n) Λ(n) − μ ( d ) l o g   d -\mu(d)log\:d μ(d)logd的莫比乌斯变换

十三、 p 91 p91 p91 定理 1 1 1:陷门单向函数

定义:数论函数 f ( n ) f(n) f(n)若为陷门单向函数,则满足:

①对 f ( n ) f(n) f(n)的定义域内的每个 n n n,均存在函数 f − 1 ( l ) f^{-1}(l) f1(l),使得 f − 1 ( f ( n ) ) = f ( f − 1 ( n ) ) = n f^{-1}(f(n))=f(f^{-1}(n))=n f1(f(n))=f(f1(n))=n

f ( n ) f(n) f(n) f − 1 ( l ) f^{-1}(l) f1(l)都容易计算

③仅根据已知的计算 f ( n ) f(n) f(n)的算法,去找出计算 f − 1 f^{-1} f1的容易算法是非常困难的

定理:设 m = p q m=pq m=pq,适当选择两个奇素数 p , q p,q p,q,以及正整数 s ( 1 ⩽ s ⩽ φ ( m ) − 1 ) s(1\leqslant s \leqslant \varphi(m)-1) s(1sφ(m)1)满足 ( s , p − 1 ) = ( s , q − 1 ) = 1 (s,p-1)=(s,q-1)=1 (s,p1)=(s,q1)=1,则可使
f ( n ) = ⟨ n s ⟩ m (1) f(n)=\langle n^{s}\rangle_{m}\tag{1} f(n)=nsm(1)
1 ⩽ n ⩽ m − 1 1\leqslant n\leqslant m-1 1nm1上的陷门单向函数

证明:

( s , φ ( m ) ) = 1 (s,\varphi(m))=1 (s,φ(m))=1,存在 h h h满足
s h ≡ 1 ( m o d φ ( m ) ) ,    0 < h < φ ( m ) (2) sh\equiv 1\pmod{\varphi(m)},\; 0<h<\varphi(m) \tag{2} sh1(modφ(m)),0<h<φ(m)(2)
f ( n ) = ⟨ n s ⟩ m = l , n ∈ [ 1 , m − 1 ] f(n)=\langle n^{s}\rangle_{m}=l,n\in[1,m-1] f(n)=nsm=l,n[1,m1]定义
F ( l ) = ⟨ l h ⟩ m (3) F(l)=\langle l^{h}\rangle_{m}\tag{3} F(l)=lhm(3)
( 1 ) ( 2 ) (1)(2) (1)(2)可得
F ( f ( n ) ) = ⟨ f ( n ) h ⟩ m ≡ f ( n ) h ≡ n s h ( m o d m ) (4) F(f(n))=\langle f(n)^{h}\rangle_{m}\equiv f(n)^{h}\equiv n^{sh}\pmod m\tag{4} F(f(n))=f(n)hmf(n)hnsh(modm)(4)
此时若 ( n , m ) = 1 (n,m)=1 (n,m)=1,利用欧拉定理,结合 ( 2 ) ( 4 ) (2)(4) (2)(4),可以得出 F ( f ( n ) ) ≡ n ( m o d m ) F(f(n))\equiv n\pmod m F(f(n))n(modm),即得
F ( f ( n ) ) = n F(f(n))=n F(f(n))=n
( n , m ) > 1 (n,m)>1 (n,m)>1,则 p ∣ n p|n pn,或 q ∣ n q|n qn,由 ( 4 ) (4) (4)分别取模 p p p或模 q q q,仍然给出 F ( f ( n ) ) = n F(f(n))=n F(f(n))=n,同理可证 f ( F ( n ) ) = n f(F(n))=n f(F(n))=n

m m m是一个很大的数时,因为需要得到 h h h,需得到 p , q p,q p,q,但对其分解因式十分困难,故可使得 f ( x ) f(x) f(x)是在 [ 1 , m − 1 ] [1,m-1] [1,m1]间的陷门单向函数

证毕

十四、 p 98 − 99 p98-99 p9899 定理 1 、 2 1、2 12

x 2 ≡ n ( m o d m ) ,    ( n , m ) = 1 (1) x^2\equiv n\pmod m,\;(n,m)=1\tag{1} x2n(modm),(n,m)=1(1)

定义:设 m > 1 m>1 m>1,若 ( 1 ) (1) (1)有解,则 n n n叫做模 m m m的二次剩余;若无解,则 n n n叫做模 m m m的二次非剩余

解同余式 ( 1 ) (1) (1)归结到 m m m为素数的情形,因为 m = 2 m=2 m=2时,解同余式 ( 1 ) (1) (1)变得极为容易,所以,我们着重讨论 m = p m=p m=p的情形,这里 p p p是一个奇素数,即二次同余式
x 2 ≡ n ( m o d p ) ,    ( p , n ) = 1 (2) x^2\equiv n\pmod p,\;(p,n)=1\tag{2} x2n(modp),(p,n)=1(2)
定理 1 1 1:在模 p p p的缩系 1 , ⋯   , p − 1 1,\dotsb,p-1 1,,p1中,有 p − 1 2 \frac{p-1}{2} 2p1个模p的二次剩余,和 p − 1 2 \frac{p-1}{2} 2p1个模p的二次非剩余,且
S = { 1 , ⟨ 2 2 ⟩ p , … , ⟨ ( p − 1 2 ) 2 ⟩ p } (3) S = \Big\{1,\langle 2^2\rangle_p,\dotsc,\Big\langle\Big(\frac{p-1}{2}\Big)^2\Big\rangle_p\Big\}\tag{3} S={1,22p,,(2p1)2p}(3)
就是模 p p p缩系中的全部二次剩余

证明:

S S S中元素各不相同

假设 S S S中有两个数相等,设为 1 ⩽ j < i ⩽ p − 1 2 , ⟨ j 2 ⟩ p = ⟨ i 2 ⟩ p 1\leqslant j <i \leqslant \frac{p-1}{2},\langle j^2\rangle_p=\langle i^2\rangle_p 1j<i2p1,j2p=i2p,则有
j 2 = ⟨ j 2 ⟩ p = ⟨ i 2 ⟩ p ≡ i 2 ( m o d p ) j^2=\langle j^2\rangle_p=\langle i^2\rangle_p\equiv i^2\pmod p j2=j2p=i2pi2(modp)

( j − i ) ( j + i ) ≡ 0 ( m o d p ) (j-i)(j+i)\equiv 0\pmod p (ji)(j+i)0(modp)
因为 1 < j + i < p 1<j+i<p 1<j+i<p,故 p ∣ j − i p|j-i pji,与所设 1 ⩽ j < i ⩽ p − 1 2 1\leqslant j <i \leqslant \frac{p-1}{2} 1j<i2p1矛盾

S S S中元素各不相同

S S S中每个元素都是模 p p p的二次剩余

∀ ⟨ i 2 ⟩ ∈ S \forall \langle i^2\rangle \in S i2S

⟨ i 2 ⟩ ≡ i 2 ( m o d p ) \langle i^2\rangle \equiv i^2\pmod p i2i2(modp)

∴ ∃ x = i , 使 得 x 2 ≡ ⟨ i 2 ⟩ ( m o d p ) \therefore \exists x=i,使得x^2\equiv \langle i^2\rangle \pmod p x=i,使x2i2(modp)

∴ ⟨ i 2 ⟩ \therefore \langle i^2\rangle i2是模 p p p的二次剩余

S S S中每个元素都是模 p p p的二次剩余

( 3 ) (3) (3)包含了所有的模 p p p的二次剩余

1 ⩽ n ⩽ p − 1 1\leqslant n\leqslant p-1 1np1是模 p p p的一个二次剩余则二次同余式 ( 2 ) (2) (2)有解 x 1 x_{1} x1,显然 p − x 1 p-x_{1} px1也是 ( 2 ) (2) (2)的解.由于 x 1 ≠ p − x 1 ( m o d p ) x_{1}≠p-x_{1}\pmod p x1=px1(modp),再由 p 43 p43 p43拉格朗日定理知 ( 2 ) (2) (2)若有解,则恰有二解.于是,不失一般,可设 1 ⩽ x 1 ⩽ p − 1 2 1\leqslant x_{1}\leqslant \frac{p-1}{2} 1x12p1,故由 1 ⩽ n ⩽ p − 1 , ⟨ x 1 2 ⟩ p ≡ x 1 2 ≡ n ( m o d p ) 1\leqslant n \leqslant p-1,\langle x_1^2\rangle_p\equiv x_1^2\equiv n\pmod p 1np1,x12px12n(modp),可知 n n n必与 ( 3 ) (3) (3)中一数相等

证毕

定义:设 p p p是奇素数, ( p , m ) = 1 (p,m)=1 (p,m)=1,令
( n p ) = { 1 n 是 模 p 的 二 次 剩 余 − 1 n 是 模 p 的 二 次 非 剩 余 \bigg(\frac{n}{p}\bigg)= \begin{cases} 1 & \quad n是模p的二次剩余\\ -1 & \quad n是模p的二次非剩余 \end{cases} (pn)={11npnp
函数 ( n p ) \Big(\frac{n}{p}\Big) (pn)叫做勒让德符号

定理 2 2 2
( n p ) = 1    ⟺    n p − 1 2 ≡ 1 ( m o d p ) (4) \Big(\frac{n}{p}\Big)=1 \iff n^{\frac{p-1}{2}}\equiv 1\pmod p\tag{4} (pn)=1n2p11(modp)(4)

( n p ) = − 1    ⟺    n p − 1 2 ≡ − 1 ( m o d p ) (5) \Big(\frac{n}{p}\Big)=-1 \iff n^{\frac{p-1}{2}}\equiv -1\pmod p\tag{5} (pn)=1n2p11(modp)(5)

证明:若 ( n p ) = 1 \Big(\frac{n}{p}\Big)=1 (pn)=1,则 ( 2 ) (2) (2)有解 x 1 x_{1} x1,且 ( x 1 , p ) = 1 (x_1,p)=1 (x1,p)=1,利用费马小定理,由 ( 2 ) (2) (2)推出
1 ≡ x 1 p − 1 ≡ n p − 1 2 ( m o d p ) 1\equiv x_1^{p-1}\equiv n^{\frac{p-1}{2}}\pmod p 1x1p1n2p1(modp)
n p − 1 2 ≡ 1 ( m o d p ) n^{\frac{p-1}{2}}\equiv 1\pmod p n2p11(modp)成立,表明 x p − 1 2 ≡ 1 ( m o d p ) x^{\frac{p-1}{2}}\equiv 1\pmod p x2p11(modp)有解,根据拉格朗日定理该同余式至多有 p − 1 2 \frac{p-1}{2} 2p1个解, ∀ ⟨ i 2 ⟩ ∈ S \forall \langle i^2 \rangle \in S i2S ⟨ i 2 ⟩ p − 1 2 ≡ ( i 2 ) p − 1 2 = i p − 1 ≡ 1 ( m o d p ) \langle i^2 \rangle^{\frac{p-1}{2}}\equiv (i^2)^{\frac{p-1}{2}}=i^{p-1}\equiv 1\pmod p i22p1(i2)2p1=ip11(modp),所以 S S S中的所有元素都是同余式的解,共 p − 1 2 \frac{p-1}{2} 2p1个,但 n n n也是同余式的解,故 ∃ x ∈ [ 1 , p − 1 2 ] \exists x \in [1,\frac{p-1}{2}] x[1,2p1],使得 ⟨ x 2 ⟩ ≡ n ( m o d p ) 即 x 2 ≡ n ( m o d p ) \langle x^2\rangle\equiv n\pmod p即x^2\equiv n\pmod p x2n(modp)x2n(modp),故 ( n p ) = 1 \Big(\frac{n}{p}\Big)=1 (pn)=1

( 4 ) (4) (4)成立,再由 n p − 1 ≡ 1 ( m o d p ) n^{p-1}\equiv 1\pmod p np11(modp),推出
( n p − 1 2 − 1 ) ( n p − 1 2 + 1 ) ≡ 0 ( m o d p ) (n^{\frac{p-1}{2}}-1)(n^{\frac{p-1}{2}}+1)\equiv 0\pmod p (n2p11)(n2p1+1)0(modp)
因为 p p p是奇素数,所以 ( 4 ) (4) (4) ( 5 ) (5) (5)有一个且只们一个成立.我们已经证明了,如果 n n n是模 p p p的二次剩余则 ( 4 ) (4) (4)成立,故 ( 3 ) (3) (3)给出了 x p − 1 2 ≡ 1 ( m o d p ) x^{\frac{p-1}{2}}\equiv 1\pmod p x2p11(modp) p − 1 2 \frac{p-1}{2} 2p1个解,再由 p 44 定 理 2 p44定理2 p442

p 44 p44 p44定理 2 2 2:设同余式
f ( x ) = a n x n + … + a 1 x + a 0 ≡ 0 ( m o d p ) f(x)=a_nx^n+\dotsc+a_1x+a_0\equiv 0\pmod p f(x)=anxn++a1x+a00(modp)
的解的个数大于 n n n,这里 p p p是素数, a i a_i ai是整数 ( i = 1 , … , n ) (i=1,\dots,n) (i=1,,n),则 p ∣ a i ( i = 1 , … , n ) p|a_i(i=1,\dotsc,n) pai(i=1,,n)

证明:设最大的不被 p p p整除的系数的下标为 k k k k k k次同余式
a k x k + … + a 1 x + a 0 ≡ 0 ( m o d p ) ,    p ∤ a k a_kx^k+\dotsc+a_1x+a_0\equiv 0\pmod p,\;p\nmid a_k akxk++a1x+a00(modp),pak
的解的个数大于 k k k,与定理 1 1 1(拉格朗日定理)矛盾

证毕

可知, ( 3 ) (3) (3)给出了它的所有解,由定理 1 1 1,可知模 p p p的缩系中 p − 1 2 \frac{p-1}{2} 2p1个二次非剩余给出了 x p − 1 2 ≡ − 1 ( m o d p ) x^{\frac{p-1}{2}}\equiv -1\pmod p x2p11(modp)全部解,证明若 n n n是模 p p p的二次非剩余,则 ( 5 ) (5) (5)成立

证毕

十五、 p 103 p103 p103 高斯引理

定理 1 1 1:设 p p p是一个奇素数, ( p , m ) = 1 (p,m)=1 (p,m)=1,且
S = { ⟨ n ⟩ p , ⟨ 2 n ⟩ p , … , ⟨ p − 1 2 n ⟩ p } S = \Big\{\langle n\rangle_p,\langle 2n\rangle_p,\dots,\Big\langle \frac{p-1}{2}n\Big\rangle_p\Big\} S={np,2np,,2p1np}
S S S中含有 m m m个大于 1 2 p \frac{1}{2}p 21p,则
( n p ) = ( − 1 ) m \Big(\frac{n}{p}\Big)=(-1)^m (pn)=(1)m
证明:设 S = { a 1 , … , a l , b 1 , … , b m } ,    l + m = p − 1 2 S=\{a_1,\dots,a_l,b_1,\dots,b_m\},\; l+m=\frac{p-1}{2} S={a1,,al,b1,,bm},l+m=2p1

假设 a i = p − b j a_{i}=p-b_{j} ai=pbj,则

⟨ x n ⟩ + ⟨ y n ⟩ ≡ 0 ( m o d p ) \langle xn\rangle+\langle yn\rangle\equiv 0 \pmod p xn+yn0(modp)

x n + y n ≡ 0 ( m o d p ) ,    ( 1 ⩽ x ⩽ p − 1 2 , 1 ⩽ y ⩽ p − 1 2 ) xn+yn\equiv 0 \pmod p,\;(1\leqslant x\leqslant \frac{p-1}{2},1\leqslant y\leqslant \frac{p-1}{2}) xn+yn0(modp),(1x2p1,1y2p1)

x + y ≡ 0 ( m o d p ) x+y\equiv 0 \pmod p x+y0(modp)

p ∣ x + y p|x+y px+y

与但 2 ⩽ x + y ⩽ p − 1 2\leqslant x+y\leqslant p-1 2x+yp1矛盾

a i ≠ p − b j a_{i}\not=p-b_{j} ai=pbj

{ a 1 , … , a l , p − b 1 , … , p − b m } = { 1 , … , p − 1 2 } \{a_1,\dots,a_l,p-b_1,\dots,p-b_m\}=\{1,\dots,\frac{p-1}{2}\} {a1,,al,pb1,,pbm}={1,,2p1}
∴ ∏ s = 1 l a s ∏ t = 1 m ( p − b t ) = ( p − 1 2 ) ! ( p − 1 2 ) ! = ∏ s = 1 l a s ∏ t = 1 m ( p − b t ) ≡ ( − 1 ) m ∏ s = 1 l a s ∏ t = 1 m b t ≡ ( − 1 ) m ( p − 1 2 ) ! n p − 1 2 ( m o d p ) \begin{aligned} && \therefore \prod_{s=1}^{l}a_s\prod_{t=1}^{m}(p-b_t)&=\Big(\frac{p-1}{2}\Big)! \\ && \Big(\frac{p-1}{2}\Big)&!=\prod_{s=1}^{l}a_s\prod_{t=1}^{m}(p-b_t)\\ && &\equiv(-1)^m\prod_{s=1}^{l}a_s\prod_{t=1}^{m}b_t\equiv(-1)^m\Big(\frac{p-1}{2}\Big)!n^{\frac{p-1}{2}}\pmod p \end{aligned} s=1last=1m(pbt)(2p1)=(2p1)!!=s=1last=1m(pbt)(1)ms=1last=1mbt(1)m(2p1)!n2p1(modp)


n p − 1 2 ≡ ( − 1 ) m ( m o d p ) n^{\frac{p-1}{2}}\equiv(-1)^m\pmod p n2p1(1)m(modp)
因为 n p − 1 2 ≡ ( n p ) ( m o d p ) n^{\frac{p-1}{2}}\equiv\Big(\frac{n}{p}\Big)\pmod p n2p1(pn)(modp),故
( n p ) ≡ ( − 1 ) m ( m o d p ) \Big(\frac{n}{p}\Big)\equiv (-1)^m\pmod p (pn)(1)m(modp)
( n p ) = ( − 1 ) m \Big(\frac{n}{p}\Big)= (-1)^m (pn)=(1)m

证毕

证明 ( 2 p ) = ( − 1 ) p 2 − 1 8 \Big(\frac{2}{p}\Big)=(-1)^{\frac{p^2-1}{8}} (p2)=(1)8p21

设素数 p ⩾ 2 p\geqslant 2 p2,则
( 2 p ) = ( − 1 ) p 2 − 1 8 \Big(\frac{2}{p}\Big)=(-1)^{\frac{p^2-1}{8}} (p2)=(1)8p21

S = { ⟨ 2 ⟩ p , ⟨ 2 ⋅ 2 ⟩ p , … , ⟨ p − 1 2 2 ⟩ p } = { 2 p , 2 ⋅ 2 p , … , p − 1 2 2 p } \begin{aligned} && S &= \Big\{\langle 2\rangle_p,\langle 2·2\rangle_p,\dots,\Big\langle \frac{p-1}{2}2\Big\rangle_p\Big\} \\ && \quad&=\Big\{2_p,2·2_p,\dots,\frac{p-1}{2}2_p\Big\} \end{aligned} S={2p,22p,,2p12p}={2p,22p,,2p12p}

求出 S S S中大于 p 2 \frac{p}{2} 2p的个数 m m m
2 x > p 2 ​ x > p 4 ​ x ∈ { [ p 4 ] + 1 , … , p − 1 2 } ​ 则 m = p − 1 2 − [ p 4 ] ​ 则 m ≡ p 2 − 1 8 ( m o d 2 ) ​ 故 ( 2 p ) = ( − 1 ) p 2 − 1 8 ​ \begin{aligned} && & 2x>\frac{p}{2}​ \\ && & x>\frac{p}{4} ​\\ && & x\in \{[\frac{p}{4}]+1,\dots,\frac{p-1}{2}\}​ \\ && & 则m=\frac{p-1}{2}-[\frac{p}{4}]​ \\ && & 则m\equiv \frac{p^2-1}{8} \pmod 2 ​\\ && & 故\Big(\frac{2}{p}\Big)=(-1)^{\frac{p^2-1}{8}}​\\\end{aligned} 2x>2px>4px{[4p]+1,,2p1}m=2p1[4p]m8p21(mod2)(p2)=(1)8p21

十六、 p 107 p107 p107 二次互反律(上课方法证明)

定理:设 p ⩾ 3 , q ⩾ 3 p\geqslant 3,q\geqslant 3 p3,q3是两个素数, p ≠ q p\not=q p=q,则
( p q ) ( q p ) = ( − 1 ) p − 1 2 q − 1 2 \Big(\frac{p}{q}\Big)\Big(\frac{q}{p}\Big)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}} (qp)(pq)=(1)2p12q1
利用高斯引理计算 ( p q ) \Big(\frac{p}{q}\Big) (qp)
S = { ⟨ q ⟩ p , ⟨ 2 q ⟩ p , … , ⟨ p − 1 2 q ⟩ p } S = \Big\{\langle q\rangle_p,\langle 2q\rangle_p,\dots,\Big\langle \frac{p-1}{2}q\Big\rangle_p\Big\} S={qp,2qp,,2p1qp}

1 ⩽ k ⩽ p − 1 2 1\leqslant k \leqslant\frac{p-1}{2} 1k2p1时,有
k q = q k p + r k , q k = [ k q p ] , 1 ⩽ r k ⩽ p − 1 kq=q_kp+r_k,q_k=\Big[\frac{kq}{p}\Big],1\leqslant r_k \leqslant p-1 kq=qkp+rk,qk=[pkq],1rkp1
S = { a 1 , … , a l , b 1 , … , b m } ,    l + m = p − 1 2 S=\{a_1,\dots,a_l,b_1,\dots,b_m\},\; l+m=\frac{p-1}{2} S={a1,,al,b1,,bm},l+m=2p1

a = ∑ s = 1 l a s , b = ∑ t = 1 m b t a=\displaystyle\sum_{s=1}^{l}a_s,b=\displaystyle\sum_{t=1}^{m}b_t a=s=1las,b=t=1mbt,则
a + b = ∑ k = 1 p − 1 2 r k (1) a+b=\sum_{k=1}^{\frac{p-1}{2}}r_k\tag{1} a+b=k=12p1rk(1)
由高斯引理可知 { a 1 , … , a l , p − b 1 , … , p − b m } = { 1 , … , p − 1 2 } \{a_1,\dots,a_l,p-b_1,\dots,p-b_m\}=\{1,\dots,\frac{p-1}{2}\} {a1,,al,pb1,,pbm}={1,,2p1},故
p 2 − 1 8 = 1 + 2 + ⋯ + p − 1 2 = a + m p − b (2) \frac{p^2-1}{8}=1+2+\dots+\frac{p-1}{2}=a+mp-b\tag{2} 8p21=1+2++2p1=a+mpb(2)

p 2 − 1 8 q = ∑ k = 1 p − 1 2 k q = p ∑ k = 1 p − 1 2 q k + ∑ k = 1 p − 1 2 r k = p ∑ k = 1 p − 1 2 q k + a + b (3) \frac{p^2-1}{8}q=\sum_{k=1}^{\frac{p-1}{2}}kq=p\sum_{k=1}^{\frac{p-1}{2}}q_k+\sum_{k=1}^{\frac{p-1}{2}}r_k=p\sum_{k=1}^{\frac{p-1}{2}}q_k+a+b\tag{3} 8p21q=k=12p1kq=pk=12p1qk+k=12p1rk=pk=12p1qk+a+b(3)
( 3 ) (3) (3)式减去 ( 2 ) (2) (2)式得
p 2 − 1 8 ( q − 1 ) = p ∑ k = 1 p − 1 2 q k − m p + 2 b \frac{p^2-1}{8}(q-1)=p\sum_{k=1}^{\frac{p-1}{2}}q_k-mp+2b 8p21(q1)=pk=12p1qkmp+2b
p − 1 、 p + 1 、 q − 1 、 2 b 均 为 偶 数 , ( p , 2 ) = 1 p-1、p+1、q-1、2b均为偶数,(p,2)=1 p1p+1q12b,(p,2)=1


m ≡ ∑ k = 1 p − 1 2 q k ( m o d 2 ) m\equiv \sum_{k=1}^{\frac{p-1}{2}}q_k \pmod 2 mk=12p1qk(mod2)

( q p ) = ( − 1 ) m = ( − 1 ) ∑ k = 1 p − 1 2 q k = ( − 1 ) ∑ k = 1 p − 1 2 [ k q p ] \Big(\frac{q}{p}\Big)=(-1)^m=(-1)^{\displaystyle\sum_{k=1}^{\frac{p-1}{2}}q_k}=(-1)^{\displaystyle\sum_{k=1}^{\frac{p-1}{2}}\big[\frac{kq}{p}\big]} (pq)=(1)m=(1)k=12p1qk=(1)k=12p1[pkq]
同理
( p q ) = ( − 1 ) ∑ k = 1 q − 1 2 [ k p q ] \Big(\frac{p}{q}\Big)=(-1)^{\displaystyle\sum_{k=1}^{\frac{q-1}{2}}\big[\frac{kp}{q}\big]} (qp)=(1)k=12q1[qkp]
选取 x o y xoy xoy坐标轴的第二象限的一块矩形区域 ( 0 ⩽ X ⩽ p 2 , 0 ⩽ Y ⩽ q 2 ) (0\leqslant X \leqslant \frac{p}{2},0\leqslant Y \leqslant \frac{q}{2}) (0X2p,0Y2q),该区域内的整点有 p − 1 2 q − 1 2 \frac{p-1}{2}\frac{q-1}{2} 2p12q1个,对角线 y = q p x y=\frac{q}{p}x y=pqx上没有整点

证:假设对角线 y = q p x y=\frac{q}{p}x y=pqx上有整点

p y = q x py=qx py=qx

∴ p ∣ x \therefore p|x px

1 ⩽ x ⩽ p − 1 2 1\leqslant x \leqslant \frac{p-1}{2} 1x2p1矛盾

故对角线 y = q p x y=\frac{q}{p}x y=pqx上没有整点

k    ( 1 ⩽ k ⩽ p − 1 2 ) k\;(1\leqslant k \leqslant \frac{p-1}{2}) k(1k2p1),位于对角线 y = q p x y=\frac{q}{p}x y=pqx下方的整点有 ( k , 1 ) , ( k , 2 ) , … , ( k , [ k q p ] ) (k,1),(k,2),\dots,(k,\Big[\frac{kq}{p}\Big]) (k,1),(k,2),,(k,[pkq])

同理取 l    ( 1 ⩽ l ⩽ q − 1 2 ) l\;(1\leqslant l \leqslant \frac{q-1}{2}) l(1l2q1),位于对角线 y = q p x y=\frac{q}{p}x y=pqx左方的整点有 ( 1 , l ) , ( 2 , l ) , … , ( [ k p q ] , l ) (1,l),(2,l),\dots,(\Big[\frac{kp}{q}\Big],l) (1l),(2,l),,([qkp],l)


∑ k = 1 p − 1 2 [ k q p ] + ∑ k = 1 q − 1 2 [ k p q ] = p − 1 2 q − 1 2 \displaystyle\sum_{k=1}^{\frac{p-1}{2}}\big[\frac{kq}{p}\big]+\displaystyle\sum_{k=1}^{\frac{q-1}{2}}\big[\frac{kp}{q}\big]=\frac{p-1}{2}\frac{q-1}{2} k=12p1[pkq]+k=12q1[qkp]=2p12q1
即得
( p q ) ( q p ) = ( − 1 ) p − 1 2 q − 1 2 \Big(\frac{p}{q}\Big)\Big(\frac{q}{p}\Big)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}} (qp)(pq)=(1)2p12q1
( 0 ⩽ X ⩽ p 2 , 0 ⩽ Y ⩽ q 2 ) (0 \leqslant X \leqslant \frac{p}{2},0\leqslant Y \leqslant \frac{q}{2}) (0X2p,0Y2q),该区域内的整点有 p − 1 2 q − 1 2 \frac{p-1}{2}\frac{q-1}{2} 2p12q1个,对角线 y = q p x y=\frac{q}{p}x y=pqx上没有整点

证:假设对角线 y = q p x y=\frac{q}{p}x y=pqx上有整点

p y = q x py=qx py=qx

∴ p ∣ x \therefore p|x px

1 ⩽ x ⩽ p − 1 2 1\leqslant x \leqslant \frac{p-1}{2} 1x2p1矛盾

故对角线 y = q p x y=\frac{q}{p}x y=pqx上没有整点

k    ( 1 ⩽ k ⩽ p − 1 2 ) k\;(1\leqslant k \leqslant \frac{p-1}{2}) k(1k2p1),位于对角线 y = q p x y=\frac{q}{p}x y=pqx下方的整点有 ( k , 1 ) , ( k , 2 ) , … , ( k , [ k q p ] ) (k,1),(k,2),\dots,(k,\Big[\frac{kq}{p}\Big]) (k,1),(k,2),,(k,[pkq])

同理取 l    ( 1 ⩽ l ⩽ q − 1 2 ) l\;(1\leqslant l \leqslant \frac{q-1}{2}) l(1l2q1),位于对角线 y = q p x y=\frac{q}{p}x y=pqx左方的整点有 ( 1 , l ) , ( 2 , l ) , … , ( [ k p q ] , l ) (1,l),(2,l),\dots,(\Big[\frac{kp}{q}\Big],l) (1l),(2,l),,([qkp],l)


∑ k = 1 p − 1 2 [ k q p ] + ∑ k = 1 q − 1 2 [ k p q ] = p − 1 2 q − 1 2 \displaystyle\sum_{k=1}^{\frac{p-1}{2}}\big[\frac{kq}{p}\big]+\displaystyle\sum_{k=1}^{\frac{q-1}{2}}\big[\frac{kp}{q}\big]=\frac{p-1}{2}\frac{q-1}{2} k=12p1[pkq]+k=12q1[qkp]=2p12q1
即得
( p q ) ( q p ) = ( − 1 ) p − 1 2 q − 1 2 \Big(\frac{p}{q}\Big)\Big(\frac{q}{p}\Big)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}} (qp)(pq)=(1)2p12q1
证毕

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值