论文笔记 2023.5.18

Multi-class Weather Classification using EffcientNet-B4 with Attention
    EffcientNet模型并添加注意力机制


Weather Classification for Outdoor Power Monitoring Based on Improved SqueezeNet
    SqueezedNet是一种轻量级的卷积神经网络,减少参数的同时也保证了准确度。
    作者在该网络模型的基础上进行了改进:
        1 增加了图片输入的尺寸和第一层卷积层的参数个数:有助于特征的提取
        2 联合使用Global Average Pooling(AVG)和Fully Connected layer(FC)
          AVG减少计算量 FC提升fitting ability
        3 添加BatchNormalization(BN)用于防止过拟合和提高准确率。
          最后测试了SqueezeNet(原网络结构) SqueezeNet-BN(原网络结构+BN)
          SqueezeNet-E(原网络结构+input和output改进) SqueezeNet-EBN(最终网络结构)
          发现SqueezeNet-EBN性能最好

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值