Multi-class Weather Classification using EffcientNet-B4 with Attention
EffcientNet模型并添加注意力机制
Weather Classification for Outdoor Power Monitoring Based on Improved SqueezeNet
SqueezedNet是一种轻量级的卷积神经网络,减少参数的同时也保证了准确度。
作者在该网络模型的基础上进行了改进:
1 增加了图片输入的尺寸和第一层卷积层的参数个数:有助于特征的提取
2 联合使用Global Average Pooling(AVG)和Fully Connected layer(FC)
AVG减少计算量 FC提升fitting ability
3 添加BatchNormalization(BN)用于防止过拟合和提高准确率。
最后测试了SqueezeNet(原网络结构) SqueezeNet-BN(原网络结构+BN)
SqueezeNet-E(原网络结构+input和output改进) SqueezeNet-EBN(最终网络结构)
发现SqueezeNet-EBN性能最好