自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 收藏
  • 关注

原创 基于 WAQI API 的空气质量数据智能采集与预处理系统(Python + pandas)

本文介绍一套基于 Python 的空气质量数据采集与预处理系统,通过 WAQI API 获取多城市 PM2.5、PM10、AQI 等实时数据。项目包含两个核心脚本:waqi_city_history.py 实现带 Token 认证的 API 请求与 SSE 流解析,规避反爬机制;analysis.py 完成缺失值处理、异常值过滤、特征工程及中文可视化(趋势图、箱线图等)。代码结构清晰、注释完整,仅依赖 requests、pandas、matplotlib 等常用库。适用于数据分析实战、课程作业或环境监测项目

2025-12-28 11:26:52 1013 2

空气质量API智能预处理系统(完整项目源码+课程报告)- 多城市数据采集、清洗、特征工程与可视化分析

本资源提供一套完整的空气质量数据分析项目,涵盖从API数据采集 → 智能解密 → 数据清洗与预处理 → 特征工程 → 多维度可视化分析的全流程,适用于数据科学、环境信息学、Python数据分析等课程设计或实战练习。 核心内容包括: 自动化数据采集脚本(waqi_city_history.py) 支持批量获取 WAQI(World Air Quality Index)平台多城市历史空气质量数据 自动处理 API 加密格式(SSE 流),实现自定义解密算法 规避反爬机制(User-Agent + 随机延时),解决 429 频率限制问题 全流程预处理与分析代码(analysis.py) 缺失值处理(前向/后向填充 + 均值填充) 异常值检测(IQR 方法)与修正(中位数替换) AQI 指数计算(基于中国标准) 特征工程:时间特征(年/月/季节)、移动平均(7日/30日)、PM2.5/PM10 比率 数据标准化(StandardScaler)与归一化(MinMaxScaler) 单城市时间序列分析 + 多城市箱线图/热力图/趋势对比 + 空气质量综合排名 配套课程报告文档(两份 Word) 《空气质量API智能预处理系统.docx》:详细技术方案、流程图、评分标准 《数据采集与预处理课程报告(打印).docx》:开发问题记录、解决方案、成员分工与设计体会,真实反映团队协作过程 项目亮点: 真实 API 数据驱动,非模拟数据 解决 WAQI 平台特有的加密历史数据解析难题 强调数据真实性 vs “完美填充”,保留 NaN 逻辑严谨 支持扩展至任意城市,模块化设计便于二次开发 图表中文显示优化(SimHei 字体),可直接用于汇报或论文 适合人群: 数据科学/大数据专业学生(课程设计、毕业设计参考) Python 数据分析初学者(学习 pandas、requests)

2025-12-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除