- 博客(7)
- 收藏
- 关注
转载 目标检测mAP值计算
1.基本概念1.IOU交并比2.TP TN FP FNTP(True Positives)意思是“被分为正样本,并且分对了”TN(True Negatives)意思是“被分为负样本,而且分对了”FP(False Positives)意思是“被分为正样本,但是分错了”FN(False Negatives)意思是“被分为负样本,但是分错了”按下图来解释,左半矩形是正样本,右半矩形是负样...
2019-07-17 16:09:23 913
原创 序列识别问题的聚合交叉熵损失函数(ACE损失函数)
文本识别算法介绍文本识别问题是一个经典的序列预测问题,他输入一个有序列信息的三维图像,输出一个预测序列。常用的文本识别框架为CNN+BiLSTM+CTC,和CNN+BiLSTM+Attention。经过CNN+BiLSTM将三维图像提取特征,得到2维的特征序列(T*C),然后通过CTC或Attention将特征序列转化为预测结果。给定一张来自于训练集Q的图像I,它的文本标签S,文本所包含的类别...
2019-07-01 15:03:17 2884
原创 卷积神经网络分析与总结(ENet图像分割)
ENet语义分割网络是一个比较常用的分割网络,它拥有简单的网络结构,快速的运行时间和不多的变量,能够被应用于实时图像分割和移动端设备.相较于其他常规的语义分割网络,例如FCN,SegNet等运行时间与内存分别缩小了数十倍.1.ENet与常规语义分割网络语义分割网络应用于图像的像素级分类,即对每一个像素点确定他所属的类别,这就注定了语义分割任务相比于分类识别和目标检测任务要用更长的运行时间和更高...
2019-04-03 10:24:19 4588 3
原创 基于TensorFlow的slim模块的模型配置(DeepLab源程序分析)
在之前一篇博客中,借助DeepLabv3+的程序详细讲解了PASCAL-VOC2012数据集的读入过程,今天重点讲一下DeepLab中的训练过程模型配置与tensorboard可视化操作。DeepLab的代码模块结构非常清晰,便于对每一部分进行单独分析,而且DeepLab模型是当前图像语义分割领域最好的模型之一,所以我以该模型代码为例,详细叙述它的模型配置与tensorboard可视化操作过程。之...
2019-01-22 20:16:40 1507 1
原创 TensorFlow数据集操作(使用slim和tfrecord)
在卷积神经网络中,输入的图像数据集都非常大,而且与其他数据不同,图像都需要以三维张量(height,width,channel)形式表示,这样使得神经网络读取数据非常麻烦。在TensorFlow框架中,有一种用的非常多的方法来处理数据集,就是tfrecord文件,它与TensorFlow的中层封装库slim搭配使用起来非常方便,下面我以DeepLabv3+中的数据处理代码为例解释一下该方法。该数...
2019-01-21 22:38:20 1452
原创 卷积神经网络分析与总结(FCN图像分割)
FCN网络是深度学习图像分割领域的奠基之作,有着极大的意义.今天就来简单介绍一下FCN全卷积网络.这篇论文的标题为"Fully Convolutional Networks for Semantic Segmentation",也就是全卷积网络应用于语义分割.传统的分类卷积神经网络,如AlexNet,VGG等都是输入一幅图像,输出图像所属类别的概率,因此为对整幅图像的类别的预测.而本文中的FC...
2019-01-09 20:31:50 8190
原创 卷积神经网络分析与总结(VGG分类模型)
在之前详细读完第一篇卷积神经网络论文AlexNet之后,我最近又阅读了另一个图像分类与定位领域著名的论文VGG,考虑到我本人水平有限,下面我大概介绍一下这篇论文与VGG网络。论文名称为:“Very Deep Convolutional Networks For Large-Scale Image Recognition”这篇论文重点讲解了他们团队在ImageNet 2014挑战赛上所使用的VG...
2018-12-22 20:26:52 7173
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人