一、考察知识点
1、二叉树树删除节点
二、程序
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<TreeNode*> delNodes(TreeNode* root, vector<int>& to_delete) {
vector<TreeNode*> ans;
root = process(root, to_delete, ans);
if (root) ans.push_back(root);
return ans;
}
private:
TreeNode* process(TreeNode* root, vector<int>& to_delete, vector<TreeNode*>& ans){
if (!root) return nullptr;
root->left = process(root->left, to_delete, ans);
root->right = process(root->right, to_delete, ans);
if (!count(to_delete.begin(), to_delete.end(), root->val)) return root;
if (root->left) ans.push_back(root->left);
if (root->right) ans.push_back(root->right);
return nullptr;
}
};
三、思考
在二叉树中会经常根据不同的需求用到递归的操作。相信很多小伙伴在捋递归函数时会脑子乱的情况。
构建递归函数的技巧与需要注意的要素:
1、递归的使用条件,某个大问题可以分化为多个同样的小问题(最经典的使用场景就是二叉树的遍历)
2、递归的返回条件,返回条件可以有多个,按希望得到的结果设置条件。
递归与循环的优缺点:
看其他网友的回答,递归更易读,循环比较复杂,我觉得也看情况吧。比如本文中的递归就很难读懂。
有个简单的道理,太复杂的用递归,要不循环不但程序成而且难看懂。
比较小的问题就用循环,不但代码简单而且也容易看懂。
对于空间和时间开销的话递归方法要差点,递归次数受栈大小限制,函数调用和压栈出栈都需要时间。而循环就没什么空间和时间上额外的开销。