扩展欧几里得算法——模板整理

本文介绍了一种高效的算法——扩展欧几里得算法,该算法主要用于解决形如 ax + by = gcd(a, b) 的线性方程,并提供了一个 C++ 实现示例。扩展欧几里得算法的时间复杂度为 O(log n),在计算最大公约数的同时找到特解。
摘要由CSDN通过智能技术生成

用于求解ax+by=gcd(a,b),有一系列其他应用。
时间复杂度:O( log2n )

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
LL a,b,ans1,ans2,_gcd;
void exgcd(LL a,LL b,LL &x,LL &y){
    if(!b){ x=1; y=0; return; }
    gcd(b,a%b,y,x); y-=x*(a/b); // x <= y'  y <= x'-(a/b)y' 
}
int main(){
    freopen("gcd.in","r",stdin);
    freopen("gcd.out","w",stdout);
    scanf("%lld%lld",&a,&b);
    exgcd(a,b,ans1,ans2);
    printf("%lld %lld\n",ans1,ans2);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值