[递推] BZOJ1019: [SHOI2008]汉诺塔

题意

这里写图片描述

题解

显然由于有优先级存在,操作序列是唯一的。
我们设 g[i][x] 表示一开始有i个盘在x柱,经过一系列操作,他们都到了哪个柱子上。这是唯一确定的。我们再设这个过程的操作方案数为 f[i][x]
这样 f[n][0] 就是答案了。(我们用0,1,2表示柱A,B,C)
如何递推呢?联系经典的汉诺塔递推,i是由i-1得来的,我们同样用这样的思路来分析。
假设我们现在已经求出了 f[i1][0/1/2] g[i1][0/1/2] ,要得到 f[i][x]
若在1~i-1盘下面多加一个i盘,动i盘之前的操作的是不会变的。
因为i盘是最大的,只有 f[i1][x] 次操作做完之后才能有空柱子使i盘能移动。
由于此时1~i-1已经到 g[i1][x] 柱上了,所以i盘必然被移到 3xg[i1][x] 柱上。
为了方便描述,我们设y= g[i1][x] ,z= 3xg[i1][x]
现在1~i-1在y上,i在z上。
然后,由于有限制(2),所以i盘不会动,必然是1~i-1盘进行移动。没有整体移动完之前i盘也不会动,理由和一开始相同。
这里就需要讨论y柱上的1~i-1盘会被移动到哪里。
g[i1][y]=z
移完之后1~i都到z上了,得 g[i][x]=zf[i][x]=f[i1][x]+1+f[i1][y]
g[i1][y]=x
先是1~i-1到了x柱上,然后i盘移动到y上,再由于 g[i1][x] 为y,所有的都到y柱上了。
g[i][x]=yf[i][x]=f[i1][x]+1+f[i1][y]+1+f[i1][x]
这下状态转移就解决了。
初始化 f[1][0/1/2]=1 g[1][0/1/2] 根据给出的优先级即可得到。
还是很妙的。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=55;
int n,g[maxn][3];
char s[10][5];
LL f[maxn][3];
int main(){
    freopen("bzoj1019.in","r",stdin);
    freopen("bzoj1019.out","w",stdout);
    scanf("%d",&n);
    for(int i=1;i<=6;i++) scanf("%s",s[i]);
    for(int i=6;i>=1;i--) g[1][s[i][0]-'A']=s[i][1]-'A';
    f[1][0]=f[1][1]=f[1][2]=1;
    for(int i=2;i<=n;i++)
     for(int x=0;x<=2;x++){
        int y=g[i-1][x],z=3-y-x;
        if(g[i-1][y]==z) g[i][x]=z, f[i][x]=f[i-1][x]+f[i-1][y]+1;
                    else g[i][x]=y, f[i][x]=2*f[i-1][x]+f[i-1][y]+2;
     }
    printf("%lld\n",f[n][0]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值