题意
Claris和NanoApe在玩石子游戏,他们有n堆石子,规则如下:
1.Claris和NanoApe两个人轮流拿石子,Claris先拿。
2.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜。
不同的初始局面,决定了最终的获胜者,有些局面下先拿的Claris会赢,其余的局面Claris会负。
Claris很好奇,如果这n堆石子满足每堆石子的初始数量是不超过m的质数,而且他们都会按照最优策略玩游戏,那么NanoApe能获胜的局面有多少种。
由于答案可能很大,你只需要给出答案对10^9+7取模的值。
1<=n<=10^9, 2<=m<=50000
题解
算是模板题吧。
题目意思显然就是: 求给定一些数,取n个数使其异或和为0的方案数。
我们类似生成函数函数一样构造,可以发现其位运算异或卷积刚好符合我们要求的。卷n次即使答案。直接FWT,快速幂即可。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=150005, N=50005, MOD=1000000007, inv=(MOD+1)/2;
typedef long long LL;
int p[N+5],a[maxn];
bool vis[N+5];
void get_P(){
memset(vis,1,sizeof(vis));
for(int i=2;i<=N;i++){
if(vis[i]) p[++p[0]]=i;
for(int j=1;j<=p[0]&&(LL)p[j]*i<=N;j++){
vis[p[j]*i]=false;
if(i%p[j]==0) break;
}
}
}
int n,K,m,len;
void FWT(int a[],int n,int _k){
for(int m=2;m<=n;m<<=1)
for(int i=0;i<=n-1;i+=m)
for(int j=0;j<=m/2-1;j++){
int t0=a[i+j], t1=a[i+j+m/2];
if(_k==1) a[i+j]=(t0+t1)%MOD,a[i+j+m/2]=(t0+MOD-t1)%MOD;
else a[i+j]=(LL)(t0+t1)%MOD*inv%MOD,a[i+j+m/2]=(LL)(t0-t1+MOD)%MOD*inv%MOD;
}
}
LL Pow(LL a,LL b){
LL res=1;
for(LL w=a%MOD;b;w=w*w%MOD,b>>=1) if(b&1) (res*=w)%=MOD;
return res;
}
int main(){
freopen("bzoj4589.in","r",stdin);
freopen("bzoj4589.out","w",stdout);
get_P();
while(scanf("%d%d",&K,&m)==2){
memset(a,0,sizeof(a));
for(int i=1;i<=p[0]&&p[i]<=m;i++) a[p[i]]=1, n=p[i];
int _n=1; while(_n<=n) _n<<=1; n=_n;
FWT(a,n,1);
for(int i=0;i<=n-1;i++) a[i]=Pow(a[i],K);
FWT(a,n,-1);
printf("%d\n",a[0]);
}
return 0;
}