[FWT+Nim游戏] BZOJ4589: Hard Nim

题意

Claris和NanoApe在玩石子游戏,他们有n堆石子,规则如下:
1.Claris和NanoApe两个人轮流拿石子,Claris先拿。
2.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜。
不同的初始局面,决定了最终的获胜者,有些局面下先拿的Claris会赢,其余的局面Claris会负。
Claris很好奇,如果这n堆石子满足每堆石子的初始数量是不超过m的质数,而且他们都会按照最优策略玩游戏,那么NanoApe能获胜的局面有多少种。
由于答案可能很大,你只需要给出答案对10^9+7取模的值。
1<=n<=10^9, 2<=m<=50000

题解

算是模板题吧。
题目意思显然就是: 求给定一些数,取n个数使其异或和为0的方案数。
我们类似生成函数函数一样构造,可以发现其位运算异或卷积刚好符合我们要求的。卷n次即使答案。直接FWT,快速幂即可。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=150005, N=50005, MOD=1000000007, inv=(MOD+1)/2;
typedef long long LL;
int p[N+5],a[maxn];
bool vis[N+5];
void get_P(){
    memset(vis,1,sizeof(vis));
    for(int i=2;i<=N;i++){
        if(vis[i]) p[++p[0]]=i;
        for(int j=1;j<=p[0]&&(LL)p[j]*i<=N;j++){
            vis[p[j]*i]=false;
            if(i%p[j]==0) break; 
        }
    }
}
int n,K,m,len;
void FWT(int a[],int n,int _k){
    for(int m=2;m<=n;m<<=1) 
     for(int i=0;i<=n-1;i+=m)    
      for(int j=0;j<=m/2-1;j++){
        int t0=a[i+j], t1=a[i+j+m/2];    
        if(_k==1) a[i+j]=(t0+t1)%MOD,a[i+j+m/2]=(t0+MOD-t1)%MOD;    
             else a[i+j]=(LL)(t0+t1)%MOD*inv%MOD,a[i+j+m/2]=(LL)(t0-t1+MOD)%MOD*inv%MOD;    
      }
}
LL Pow(LL a,LL b){
    LL res=1;
    for(LL w=a%MOD;b;w=w*w%MOD,b>>=1) if(b&1) (res*=w)%=MOD;
    return res;
}
int main(){
    freopen("bzoj4589.in","r",stdin);
    freopen("bzoj4589.out","w",stdout);
    get_P();
    while(scanf("%d%d",&K,&m)==2){
        memset(a,0,sizeof(a));
        for(int i=1;i<=p[0]&&p[i]<=m;i++) a[p[i]]=1, n=p[i];
        int _n=1; while(_n<=n) _n<<=1; n=_n;
        FWT(a,n,1);
        for(int i=0;i<=n-1;i++) a[i]=Pow(a[i],K);
        FWT(a,n,-1);
        printf("%d\n",a[0]);
    } 
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值