不难发现,一个集合S的权值即等于
∏x∈S(x+1)
所以题目转化成
1,2,3,...,n
个数中取若干个数加和为
P
的方案数。
这个可以
f[i][j]
表示取了i个数,加和为
j
<script type="math/tex" id="MathJax-Element-503">j</script>的方案,转移时考虑把所有数加1, 或新取一个数1即可。
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100005,MOD=998244353;
int n,m,f[450][maxn],ans;
int main(){
freopen("B.in","r",stdin);
freopen("B.out","w",stdout);
scanf("%d%d",&n,&m); n=min(n,m); int sqrtm=sqrt(m*2)+1;
f[0][0]=1;
for(int i=1;i<=sqrtm;i++)
for(int j=i;j<=m;j++){
(f[i][j]+=f[i][j-i]+f[i-1][j-i])%=MOD;
if(j>=n+1) (f[i][j]-=f[i-1][j-(n+1)])%=MOD;
}
for(int i=1;i<=sqrtm;i++) ans=(ans+f[i][m])%MOD;
printf("%d\n",(ans+MOD)%MOD);
}