[DP] ZROI 2017 提高6 T2 异或统计

这题如果能知道一个答案的式子就很简单了,设 g[i][j] 表示取 i 个数, 加和为 j 的方案数。g数组直接 DP 出来就好了。则最终的答案就为:

i=1nimjg[Kj][nij]

为什么是对的呢?注意到 g[Kj][nij] 的意义是至少取了 j i 的方案数,贡献了一个 im

考虑一个方案,若 i 选了t 个,则这个方案满足: i 至少取1个,至少取2个…,至少取t个,刚好被算了t 次。

以前没见过,感觉很神奇。这大概是一种套路吧,这里先记一下。

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=5005,MOD=1e9+7;
typedef long long LL;
int n,m,K,g[maxn][maxn],ans;
int Pow(LL a,int b){
    LL res=1;
    for(;b;b>>=1,a=a*a%MOD) if(b&1) res=(res*a)%MOD;
    return res;
}
int main(){ 
    scanf("%d%d%d",&n,&K,&m);
    g[1][1]=1; 
    for(int i=1;i<=K;i++) 
     for(int j=1;j<=n;j++) if(g[i][j]){
        (g[i+1][j+1]+=g[i][j])%=MOD;
        if(i+j<=n) (g[i][i+j]+=g[i][j])%=MOD;
      }
    for(int i=1;i<=n;i++){
        int res=0;
        for(int j=1;(LL)i*j<=n&&j<=K;j++) (res+=g[K-j][n-i*j])%=MOD;
        (ans+=(LL)res*Pow(i,m)%MOD)%=MOD;  
    }
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值