这题要找到一个突破点,不然难以下手。
注意到题面说不能全部删完,所以
a1,an
至少有一个是不删去的。
这样就简单了,我们暴力得到
a1,a1+1,a1−1,an,an+1,an−1
的质因数。共
O(logV)
个。
然后枚举质因数,就可以
DP
了。
fi,0/1/2
表示前
i
个,没有/正在/已经删的最小代价。
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=1000005,N=100000;
int p[N+5];
bool vis[N+5];
void getP(){
for(int i=2;i<=N;i++){
if(!vis[i]) p[++p[0]]=i;
for(int j=1;j<=p[0]&&(LL)i*p[j]<=N;j++){
vis[i*p[j]]=true;
if(i%p[j]==0) break;
}
}
}
int b[maxn],c1,c2,d;
void Work(int x){
int t=sqrt(x);
for(int i=1;p[i]<=t&&x>1;i++) if(x%p[i]==0){
b[++b[0]]=p[i];
while(x%p[i]==0) x/=p[i];
}
if(x>1) b[++b[0]]=x;
}
int n,a[maxn];
LL f[maxn][3],ans,INF;
void Solve(int d){
memset(f,63,sizeof(f)); f[0][0]=0;
for(int i=1;i<=n;i++){
if(i>1) f[i][1]=min(f[i][1],min(f[i-1][0],f[i-1][1])+c1);
LL cst; if(a[i]%d==0) cst=0; else if((a[i]+1)%d==0||(a[i]-1)%d==0) cst=c2; else cst=INF;
f[i][0]=min(f[i][0],f[i-1][0]+cst); f[i][2]=min(f[i][2],min(f[i-1][1],f[i-1][2])+cst);
}
ans=min(ans,min(f[n][0],min(f[n][1],f[n][2])));
memset(f,63,sizeof(f)); f[0][0]=0;
for(int i=1;i<=n;i++){
f[i][1]=min(f[i][1],min(f[i-1][0],f[i-1][1])+c1);
LL cst; if(a[i]%d==0) cst=0; else if((a[i]+1)%d==0||(a[i]-1)%d==0) cst=c2; else cst=INF;
f[i][0]=min(f[i][0],f[i-1][0]+cst); f[i][2]=min(f[i][2],min(f[i-1][1],f[i-1][2])+cst);
}
ans=min(ans,min(f[n][0],f[n][2]));
}
int main(){
freopen("cf623B.in","r",stdin);
freopen("cf623B.out","w",stdout);
getP();
scanf("%d%d%d",&n,&c1,&c2);
if(n==1) return printf("0"),0;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
Work(a[1]); Work(a[1]-1); Work(a[1]+1); Work(a[n]); Work(a[n]-1); Work(a[n]+1);
sort(b+1,b+1+b[0]); b[0]=unique(b+1,b+1+b[0])-(b+1);
memset(&ans,63,sizeof(LL)); INF=ans;
for(int i=1;i<=b[0];i++) Solve(b[i]);
if(ans>=INF) printf("-1\n"); else printf("%I64d\n",ans);
return 0;
}