[补集转化 DP] ZROI 2017提高7 强军战歌

这题当时打的比较复杂的 DP ,需要写 n 棵有标记的线段树,复杂度是对的,但常数贼大…被卡成70…
实际上补集转化一下就变得很简单了。
先求出所有满足删完之后是个不降序列,但没有考虑之前是否已经不降的方案数。然后扣去不合法的。
我们可以 DP 求出 resi 表示长度为 i 的不降子序列个数。就可以直接求答案了:

i=1nresi(ni)!i=2nresii(ni)!

补集转化很重要啊,有时不要正面硬做,转化一下就变得异常简单。

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=2005,MOD=1000000007;
typedef long long LL;
int n,a[maxn],bit[maxn][maxn],b[maxn],f[maxn][maxn];
LL fac[maxn],res[maxn],ans;
void Updata(int k,int x,int val){
    for(;x<=b[0];x+=(x&(-x))) (bit[k][x]+=val)%=MOD; 
}
int Query(int k,int x){
    int res=0;
    for(;x;x-=(x&(-x))) (res+=bit[k][x])%=MOD;
    return res;
}
int ID(int x){ return lower_bound(b+1,b+1+b[0],x)-b; }
int main(){
    freopen("zr7A.in","r",stdin);
    freopen("zr7A.out","w",stdout);
    fac[0]=1; for(int i=1;i<=2000;i++) fac[i]=fac[i-1]*i%MOD;
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]), b[++b[0]]=a[i];
    sort(b+1,b+1+b[0]); b[0]=unique(b+1,b+1+b[0])-(b+1);
    for(int i=1;i<=n;i++){
        f[i][1]=1; for(int j=2;j<=i;j++) f[i][j]=Query(j-1,ID(a[i]));
        for(int j=1;j<=i;j++) Updata(j,ID(a[i]),f[i][j]); 
    }
    for(int i=1;i<=n;i++)
     for(int j=1;j<=n;j++) (res[i]+=f[j][i])%=MOD;
    for(int i=1;i<=n;i++) (ans+=res[i]*fac[n-i]%MOD)%=MOD;
    for(int i=2;i<=n;i++) (ans-=res[i]*i%MOD*fac[n-i]%MOD)%=MOD;
    printf("%d\n",(ans+MOD)%MOD);
    return 0;   
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值