题很关键的一点是注意到
k
严格小于
然后就很简单了,只需考虑一维的限制。
瞎搞就好了。
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=1005;
int n,m,K,cnt[maxn],v[maxn],P,a[maxn],b[maxn],c[maxn];
LL C[maxn][maxn],res,ans;
int main(){
freopen("cf40E.in","r",stdin);
freopen("cf40E.out","w",stdout);
scanf("%d%d%d",&n,&m,&K);
if((n^m)&1) return puts("0"), 0;
for(int i=1;i<=K;i++) scanf("%d%d%d",&a[i],&b[i],&c[i]), c[i]=(c[i]==1?0:1);
scanf("%d",&P);
for(int i=0;i<=1000;i++){
C[i][0]=1; for(int j=1;j<=i;j++) C[i][j]=(C[i-1][j-1]+C[i-1][j])%P;
}
if(n<m){
swap(n,m);
for(int i=1;i<=K;i++) swap(a[i],b[i]);
}
for(int i=1;i<=n;i++) cnt[i]=m, v[i]=1;
for(int i=1;i<=K;i++) cnt[a[i]]--, v[a[i]]^=c[i];
ans=1;
for(int i=1,pd=0;i<=n;i++){
if(cnt[i]==m&&!pd){ pd=1; continue; }
LL res=0;
for(int j=v[i];j<=cnt[i];j+=2) (res+=C[cnt[i]][j])%=P;
ans=(ans*res)%P;
}
printf("%lld\n",ans);
return 0;
}