[线性基] HDU3949: XOR

裸题。线性基消成对角后, 最高位为 i 的数是唯一的。这个性质很好,使得选的数集中最大数的最高位,在异或后一定是 1 。设 bi 为线性基第 i 小的数,ki 为二进制下第 i 位。 答案就是 Xor b[i]ki

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
int _test,n,Q;
LL b[70],a[70];
void Insert(LL x){
    for(int j=60;j>=0;j--) if((x>>j)&1){
        if(b[j]) x^=b[j]; else{
            b[j]=x; for(int k=j-1;k>=0;k--) if((b[j]>>k)&1) b[j]^=b[k];
            for(int k=j+1;k<=60;k++) if((b[k]>>j)&1) b[k]^=b[j];            
            break;
        }
    }
}
int main(){
    freopen("hdu3949.in","r",stdin);
    freopen("hdu3949.out","w",stdout);
    scanf("%d",&_test);
    for(int ii=1;ii<=_test;ii++){
        scanf("%d",&n);
        memset(b,0,sizeof(b));
        for(int i=1;i<=n;i++){
            LL x; scanf("%lld",&x);
            Insert(x);
        }
        memset(a,0,sizeof(a));
        for(int i=0;i<=60;i++) if(b[i]) a[++a[0]]=b[i];
        scanf("%d",&Q); printf("Case #%d:\n",ii);
        while(Q--){
            LL x; scanf("%lld",&x); x-=(a[0]<n);
            LL ans=0,now=0;
            do ans^=(a[++now]*(x&1)), x>>=1; while(x);
            if(now>a[0]) printf("-1\n"); else printf("%lld\n",ans);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值