51Nod 1674——区间的价值 V2

题目梗概

给出一个n个数。
求所有区间的贡献的加和。
一个区间的贡献:所有数的 and 所有数的or值。

解题思路

首先我们要知道对一个数一直 and 或者 or 操作减少或增加的次数是log级别的,这个看成二进制之后就很好思考。

这样我们马上就能想到枚举一个端点,然后维护log段相同的线段(and和or显然需要分开维护)。

考虑加入一个新的节点。
只需要把每个线段加入一个节点,合并值相同的线段。

答案的统计也是非常简单。
效率 O(n2logX)

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100005,maxm=25,tt=1000000007;
int a[maxn],ans,rtot,dtot,n;
struct jz{
    int x,R;
}d[maxm],r[maxm];
inline int _read(){
    int num=0;char ch=getchar();
    while (ch<'0'||ch>'9') ch=getchar();
    while (ch>='0'&&ch<='9') num=num*10+ch-48,ch=getchar();
    return num;
}
void work(int x){
    jz z[maxn];int num;
    num=dtot;for (int i=1;i<=dtot;i++) z[i]=d[i];dtot=1;d[1].x=a[x];d[1].R=x;
    for (int i=1;i<=num;i++){
        if ((z[i].x&a[x])!=d[dtot].x) d[++dtot].x=z[i].x&a[x];
        d[dtot].R=z[i].R;
    }
    num=rtot;for (int i=1;i<=rtot;i++) z[i]=r[i];rtot=1;r[1].x=a[x];r[1].R=x;
    for (int i=1;i<=num;i++){
        if ((z[i].x|a[x])!=r[rtot].x) r[++rtot].x=z[i].x|a[x];
        r[rtot].R=z[i].R;
    }
    int i=1,j=1,last=x;
    while (i<=dtot){
        int now=min(d[i].R,r[j].R);
        ans=(ans+(long long)d[i].x*(now-last+1)%tt*r[j].x%tt)%tt;
        i+=(d[i].R==now);j+=(r[j].R==now);last=now+1;
    }
}
int main(){
    freopen("exam.in","r",stdin);
    freopen("exam.out","w",stdout);
    n=_read();
    for (int i=1;i<=n;i++) a[i]=_read();
    for (int i=n;i>=1;i--) work(i);
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值