题目梗概
给出一个n个数。
求所有区间的贡献的加和。
一个区间的贡献:所有数的
and
值
∗
所有数的
解题思路
首先我们要知道对一个数一直 and 或者 or 操作减少或增加的次数是log级别的,这个看成二进制之后就很好思考。
这样我们马上就能想到枚举一个端点,然后维护log段相同的线段(and和or显然需要分开维护)。
考虑加入一个新的节点。
只需要把每个线段加入一个节点,合并值相同的线段。
答案的统计也是非常简单。
效率
O(n∗2logX)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100005,maxm=25,tt=1000000007;
int a[maxn],ans,rtot,dtot,n;
struct jz{
int x,R;
}d[maxm],r[maxm];
inline int _read(){
int num=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9') num=num*10+ch-48,ch=getchar();
return num;
}
void work(int x){
jz z[maxn];int num;
num=dtot;for (int i=1;i<=dtot;i++) z[i]=d[i];dtot=1;d[1].x=a[x];d[1].R=x;
for (int i=1;i<=num;i++){
if ((z[i].x&a[x])!=d[dtot].x) d[++dtot].x=z[i].x&a[x];
d[dtot].R=z[i].R;
}
num=rtot;for (int i=1;i<=rtot;i++) z[i]=r[i];rtot=1;r[1].x=a[x];r[1].R=x;
for (int i=1;i<=num;i++){
if ((z[i].x|a[x])!=r[rtot].x) r[++rtot].x=z[i].x|a[x];
r[rtot].R=z[i].R;
}
int i=1,j=1,last=x;
while (i<=dtot){
int now=min(d[i].R,r[j].R);
ans=(ans+(long long)d[i].x*(now-last+1)%tt*r[j].x%tt)%tt;
i+=(d[i].R==now);j+=(r[j].R==now);last=now+1;
}
}
int main(){
freopen("exam.in","r",stdin);
freopen("exam.out","w",stdout);
n=_read();
for (int i=1;i<=n;i++) a[i]=_read();
for (int i=n;i>=1;i--) work(i);
printf("%d\n",ans);
return 0;
}