[虚树+树形DP]BZOJ 2286—— [Sdoi2011]消耗战

题目梗概

给出一棵有比边权的树。

每次给出K个点,询问使这K个点不与1联通所需要砍掉的边权总和最小值。

解题思路

假如只有一次询问,显然可以用树形DP解决, f[i] 表示使i的子树下所有特殊点与1不连通的最小代价,转移状态显然。

但是多次询问会超时,但是 K 与n同阶,所以就变成虚树的裸题。

虚树的基本思想是,每次询问不需要遍历所有点,于是我们只存关于特殊点的图,边权显然是路径上的最小边权。

关于怎么存图。大致是用栈维护一条链,讨论栈顶和新加入点的LCA与栈顶上一个节点的关系,然后建图就可以了。

新图的个数最坏情况是所有点都是原图的叶子节点,最多的2K-1个。

所以用虚树处理后复杂度会过。

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const int maxn=250005;
int tot,lnk[maxn],son[2*maxn],nxt[2*maxn],w[2*maxn];
int n,f[maxn][22],dep[maxn],c[maxn],cnt,K,m,h[maxn],k,top,s[maxn];
int tot1,lnk1[maxn],son1[2*maxn],nxt1[2*maxn];
LL F[maxn],mi[maxn];
inline int _read(){
    int num=0;char ch=getchar();
    while(ch<'0'||ch>'9') ch=getchar();
    while(ch>='0'&&ch<='9') num=num*10+ch-48,ch=getchar();
    return num;
}
void add(int x,int y,int z){nxt[++tot]=lnk[x];lnk[x]=tot;son[tot]=y;w[tot]=z;}
void Link(int x,int y){if (x==y) return;nxt1[++tot1]=lnk1[x];lnk1[x]=tot1;son1[tot1]=y;}
void DFS(int x,int fa){
    c[x]=++cnt;dep[x]=dep[fa]+1;f[x][0]=fa;
    for (int j=lnk[x];j;j=nxt[j]) if (son[j]!=fa){
        mi[son[j]]=min(mi[x],(LL)w[j]);
        DFS(son[j],x);
    }
}
int LCA(int x,int y){
    if (dep[x]<dep[y]) swap(x,y);
    for (int j=K;j>=0;j--) if (dep[f[x][j]]>=dep[y]) x=f[x][j];
    if (x==y) return x;
    for (int j=K;j>=0;j--) if (f[x][j]!=f[y][j]) x=f[x][j],y=f[y][j];
    return f[x][0];
}
bool cmp(int x,int y){return c[x]<c[y];}
void DP(int x){
    LL num=0;F[x]=mi[x];
    for (int j=lnk1[x];j;j=nxt1[j]) DP(son1[j]),num+=F[son1[j]];
    lnk1[x]=0;
    if (num) F[x]=min(F[x],num);
}
void work(){
    tot1=0;k=_read();
    for (int i=1;i<=k;i++) h[i]=_read();
    sort(h+1,h+1+k,cmp);
    int tot=1;for (int i=2;i<=k;i++) if (LCA(h[tot],h[i])!=h[tot]) h[++tot]=h[i];
    top=1;s[1]=1;
    for (int i=1;i<=tot;i++){
        int C=LCA(s[top],h[i]);
        //printf("%d %d %d\n",s[top],h[i],C);
        while(1){
            if (dep[s[top-1]]<=dep[C]){
                Link(C,s[top--]);
                if (C!=s[top]) s[++top]=C;break;
            }
            Link(s[top-1],s[top]);top--;
        }
        if (h[i]!=s[top]) s[++top]=h[i];
    }
    while(top>1) Link(s[top-1],s[top]),top--;
    DP(1);
    printf("%lld\n",F[1]);
}
int main(){
    freopen("exam.in","r",stdin);
    freopen("exam.out","w",stdout);
    memset(mi,63,sizeof(mi));
    n=_read();K=log2(n);
    for (int i=1;i<n;i++){
        int x=_read(),y=_read(),z=_read();
        add(x,y,z);add(y,x,z);
    }
    DFS(1,0);
    for (int j=1;j<=K;j++)
    for (int i=1;i<=n;i++)
    f[i][j]=f[f[i][j-1]][j-1];
    m=_read();
    for (int i=1;i<=m;i++) work();
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值