描述
王强决定把年终奖用于购物,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
如果要买归类为附件的物品,必须先买该附件所属的主件,且每件物品只能购买一次。
每个主件可以有 0 个、 1 个或 2 个附件。附件不再有从属于自己的附件。
王强查到了每件物品的价格(都是 10 元的整数倍),而他只有 N 元的预算。除此之外,他给每件物品规定了一个重要度,用整数 1 ~ 5 表示。他希望在花费不超过 N 元的前提下,使自己的满意度达到最大。
满意度是指所购买的每件物品的价格与重要度的乘积的总和,假设设第ii件物品的价格为v[i]v[i],重要度为w[i]w[i],共选中了kk件物品,编号依次为j1, j2, ..., jk,则满意度为:
v[j1]∗w[j1] + v[j2]∗w[j2] +…+ v[jk]∗w[jk]。(其中 * 为乘号)
请你帮助王强计算可获得的最大的满意度。
输入描述:
输入的第 1 行,为两个正整数N,m,用一个空格隔开:
(其中 N ( N<32000 )表示总钱数, m (m <60 )为可购买的物品的个数。)
从第 2 行到第 m+1 行,第 j 行给出了编号为 j-1 的物品的基本数据,每行有 3 个非负整数 v p q
(其中 v 表示该物品的价格( v<10000 ), p 表示该物品的重要度( 1 ~ 5 ), q 表示该物品是主件还是附件。如果 q=0 ,表示该物品为主件,如果 q>0 ,表示该物品为附件, q 是所属主件的编号)
输出描述:
输出一个正整数,为张强可以获得的最大的满意度。
示例1
输入:
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出:
2200
示例2
输入:
50 5
20 3 5
20 3 5
10 3 0
10 2 0
10 1 0
输出:
130
说明:
由第1行可知总钱数N为50以及希望购买的物品个数m为5;
第2和第3行的q为5,说明它们都是编号为5的物品的附件;
第4~6行的q都为0,说明它们都是主件,它们的编号依次为3~5;
所以物品的价格与重要度乘积的总和的最大值为10*1+20*3+20*3=130
AC code
中心算法:动态规划
/// HJ16 购物单
#include <bits/stdc++.h>
using namespace std;
int dp[32000];
int main()
{
int N, m; //N为总钱数,m为可购买的商品个数
cin>>N>>m;
vector<int> masterDev(m+1), masterDevV(m+1), attachDev1(m+1), attachDev1V(m+1), attachDev2(m+1), attachDev2V(m+1);
for(int i=1; i<=m; i++)
{
int v, p, q;
cin>>v>>p>>q;
// 主件
if(q==0)
{
masterDev[i] = v;
masterDevV[i] = v*p;
}
// 附件1
else if(attachDev1[q] == 0)
{
attachDev1[q] = v;
attachDev1V[q] = v*p;
}
// 附件2
else if(attachDev2[q] == 0)
{
attachDev2[q] = v;
attachDev2V[q] = v*p;
}
}
// 动规
for(int i=1; i<=m; i++)
for(int j=N; j>=1; j--)
{
if(j>=masterDev[i])
dp[j] = max(dp[j], dp[j-masterDev[i]]+masterDevV[i]);
if(j>=masterDev[i]+attachDev1[i])
dp[j] = max(dp[j], dp[j-masterDev[i]-attachDev1[i]]+masterDevV[i]+attachDev1V[i]);
if(j>=masterDev[i]+attachDev2[i])
dp[j] = max(dp[j], dp[j-masterDev[i]-attachDev2[i]]+masterDevV[i]+attachDev2V[i]);
if(j>=masterDev[i]+attachDev1[i]+attachDev2[i])
dp[j] = max(dp[j], dp[j-masterDev[i]-attachDev1[i]-attachDev2[i]]+masterDevV[i]+attachDev1V[i]+attachDev2V[i]);
}
cout<<dp[N];
return 0;
}