HJ16 购物单

描述

王强决定把年终奖用于购物,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

如果要买归类为附件的物品,必须先买该附件所属的主件,且每件物品只能购买一次。

每个主件可以有 0 个、 1 个或 2 个附件。附件不再有从属于自己的附件。

王强查到了每件物品的价格(都是 10 元的整数倍),而他只有 N 元的预算。除此之外,他给每件物品规定了一个重要度,用整数 1 5 表示。他希望在花费不超过 N 元的前提下,使自己的满意度达到最大。

满意度是指所购买的每件物品的价格与重要度的乘积的总和,假设设第ii件物品的价格为v[i]v[i],重要度为w[i]w[i],共选中了kk件物品,编号依次为j1, j2, ..., jk​,则满意度为:

v[j1​]∗w[j1​] + v[j2​]∗w[j2​] +…+ v[jk​]∗w[jk​]。(其中 * 为乘号)

请你帮助王强计算可获得的最大的满意度。

输入描述:

输入的第 1 行,为两个正整数N,m,用一个空格隔开:

(其中 N ( N<32000 )表示总钱数, m (m <60 )为可购买的物品的个数。)

从第 2 行到第 m+1 行,第 j 行给出了编号为 j-1 的物品的基本数据,每行有 3 个非负整数 v p q

(其中 v 表示该物品的价格( v<10000 ), p 表示该物品的重要度( 1 5 ), q 表示该物品是主件还是附件。如果 q=0 ,表示该物品为主件,如果 q>0 ,表示该物品为附件, q 是所属主件的编号)

输出描述:

 输出一个正整数,为张强可以获得的最大的满意度。

示例1

输入:

1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0

输出:

2200

示例2

输入:

50 5
20 3 5
20 3 5
10 3 0
10 2 0
10 1 0

输出:

130

说明:

由第1行可知总钱数N为50以及希望购买的物品个数m为5;
第2和第3行的q为5,说明它们都是编号为5的物品的附件;
第4~6行的q都为0,说明它们都是主件,它们的编号依次为3~5;
所以物品的价格与重要度乘积的总和的最大值为10*1+20*3+20*3=130   

AC code

中心算法:动态规划

/// HJ16 购物单
#include <bits/stdc++.h>
using namespace std;

int dp[32000];

int main()
{
    int N, m;  //N为总钱数,m为可购买的商品个数
    cin>>N>>m;
    
    vector<int> masterDev(m+1), masterDevV(m+1), attachDev1(m+1), attachDev1V(m+1), attachDev2(m+1), attachDev2V(m+1);

    for(int i=1; i<=m; i++)
    {
        int v, p, q;
        cin>>v>>p>>q;

        // 主件
        if(q==0)
        {
            masterDev[i] = v;  
            masterDevV[i] = v*p;
        }

        // 附件1
        else if(attachDev1[q] == 0)
        {
            attachDev1[q] = v;
            attachDev1V[q] = v*p;
        }

        // 附件2
        else if(attachDev2[q] == 0)
        {
            attachDev2[q] = v;
            attachDev2V[q] = v*p;
        }
    }

    // 动规
    for(int i=1; i<=m; i++)
        for(int j=N; j>=1; j--)
    {
        if(j>=masterDev[i])
            dp[j] = max(dp[j], dp[j-masterDev[i]]+masterDevV[i]);
            
        if(j>=masterDev[i]+attachDev1[i])
            dp[j] = max(dp[j], dp[j-masterDev[i]-attachDev1[i]]+masterDevV[i]+attachDev1V[i]);
            
        if(j>=masterDev[i]+attachDev2[i])
            dp[j] = max(dp[j], dp[j-masterDev[i]-attachDev2[i]]+masterDevV[i]+attachDev2V[i]);
            
        if(j>=masterDev[i]+attachDev1[i]+attachDev2[i])
            dp[j] = max(dp[j], dp[j-masterDev[i]-attachDev1[i]-attachDev2[i]]+masterDevV[i]+attachDev1V[i]+attachDev2V[i]);
            
    }

    cout<<dp[N];
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值