1.对于下标为i的节点:
取左孩子:Left(i)=2i+1
取右孩子:Right(i)=2i+2
2.堆排序分类:大顶堆、小顶堆
堆:
堆是具有一下性质的完全二叉树:每个节点的之都大于或者等于其左右好孩子节点的值,称为大顶堆;或者每个节点的值都小于或等于其左右孩子节点的值,称为小顶堆.
基本思路:
将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
将堆顶元素与末尾元素交换,将最大元素“沉”到数组末端
重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序
总结:
排序一个二叉树,把他变成一个大顶堆的二叉树,把二叉树变成大顶堆的数组模式,左节点left(i)=2i+1 ,右节点right(i)=2i+2 。变成大顶堆的数组之后,接着提取出大顶堆的数组,把大顶堆的数组弄混乱,重新再次进行大顶堆的构建------总的流程是:构建大顶堆---提取大顶堆最上面的一个数和大顶堆最后一个数进行交换,重复这个动作就可以实现排序。大的数都被拿到后面,实现了从小到大的排序
代码实现:
public static void HeapSort(int[]array)
{
if(array!=null)
{
//构建大顶堆数组
//array.Length/2-1取到二叉树的最后一个非叶节点
for(int index=array.Length/2-1;index>=0;index--)
{
Headpjust(array,index,array.Length-1);
}
for(int index=array.Lengtn-1;index>0index--)
{
Swap(array,0,index);
Heapjust(array,0,index-1);
}
}
}
//数据交换
private static void Swap(int[]array,int first,int last)
{
int temp=array[last];
array[last]=array[first];
array[first]=temp;
}
private static void Headjust(int[]array,int i,int length)
{
int root=array[i];
//取到最后一个节点的左孩子也就是左节点
int k=2*i+1;
while(k<=length)
{
if(k+1<=length&&array[k+1])
{
k=k+1;
}
if(array[k]>root)
{
array[i]=array[k];
i=k;
}
k=2*k+1;
}
//把原来根节点(Length/2-1)取到的节点的值是:root。
//在上面把值进行交换后,root的值也需要进行交换
array[i]=root;
}