期末数据结构复习时看到约瑟夫环问题,之前遇到这个问题是用链表模拟写的,今天我们将从数学层面探讨这个问题.
问题大概如下:
n个人围成一圈,编号1~n,然后从1开始顺时针报数,每次报数报到m时,报到这个数的人自杀,然后下一个人重新从1开始报数,以此类推,最后问最后存活者.
我们可以手玩一下:
假设n = 8, m = 3,那么可以得到7号玩家为最后胜者,为了方便处理数据,我们将所有编号都减去1(环形)
我们观察7号玩家在每一轮与报"1"的玩家的距离:
6->3->0->3->0->1->1->0,发现(n - km + 7) % (n - i + 1)(i >= 1 && i < 8),发现对于其他点的距离也符合规律.
那么我们知道最后胜者最后的结果肯定是0,我们可以采用倒退.
假设f(i, j)为当前为i个人,并且m = j的最后胜者.
显然,f(1, j) = 0, f(i, j) = (f(i - 1, j) + j) % i(i >= 2)
这样我们可以O(n)地求出m = j时的最后胜者.