约瑟夫环问题

期末数据结构复习时看到约瑟夫环问题,之前遇到这个问题是用链表模拟写的,今天我们将从数学层面探讨这个问题.

问题大概如下:

n个人围成一圈,编号1~n,然后从1开始顺时针报数,每次报数报到m时,报到这个数的人自杀,然后下一个人重新从1开始报数,以此类推,最后问最后存活者.

我们可以手玩一下:

假设n = 8, m = 3,那么可以得到7号玩家为最后胜者,为了方便处理数据,我们将所有编号都减去1(环形)

我们观察7号玩家在每一轮与报"1"的玩家的距离:

6->3->0->3->0->1->1->0,发现(n - km + 7) % (n - i + 1)(i >= 1 && i < 8),发现对于其他点的距离也符合规律.

那么我们知道最后胜者最后的结果肯定是0,我们可以采用倒退.

假设f(i, j)为当前为i个人,并且m = j的最后胜者.

显然,f(1, j) = 0, f(i, j) = (f(i - 1, j) + j) % i(i >= 2)

这样我们可以O(n)地求出m = j时的最后胜者.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值