制造业与人工智能
根据谷歌云的调查,由于新冠的流行,制造业企业更多的使用人工智能和大数据,66%的使用人工智能的制造商表明他们越来越依赖于人工智能。
制造业中部署人工智能以协助日常运营的三大子行业为:汽车/原始设备制造商(76%)、企业供应商(68%)和重型机械(67%)。
研究表明,在日常运营中使用人工智能的公司主要是为了业务连续性方面的帮助(38%),利用人工智能提高员工效率(38%),并为员工整体提供帮助(34%)。而人工智能或者说是机器学习可以通过提供规定性分析、标记安全隐患或检测生产车间上的潜在缺陷来提高工作人员的效率。
人工智能一般被用于质量检查、产品/生产线检查、供应链管理、库存管理等。
谷歌推出 Visual Inspection AI solution
谷歌在经过调查后,确认了制造行业对人工智能的需求后,推出了全新的视觉检测 AI 解决方案(Visual Inspection AI solution)。
制造过程通常包括一个或多个步骤,其中很多需要目视检查产品是否存在缺陷,通常,目视检查是一个高度手动的过程,既耗时又容易出错。多年来,也出现了基于规则的视觉检测机器,但是每种方法都有缺点:
- 人工检查取决于操作员的感知和经验
- 传统检测机械需要编程,不灵活,不能适应产品变化
- 现有的基于机器视觉的检测一次只能检测到少数缺陷
制造业对创新并不陌生,从大规模生产到精益制造,再到 6 西格玛,以及最近的企业资源规划。人工智能 (AI) 有望将更多创新带到前沿。从理论上讲,使用 AI 有多种好处:
- 减少操作员的认知负担,减少失误
- 无需编程,适应产品变化
- 在几秒钟内检测产品的数百个兴趣领域
引入视觉检测 AI(Visual Inspection AI)
Google Cloud Visual Inspection AI 解决方案使用一组 AI 和计算机视觉技术自动执行视觉检查任务,使制造商能够通过自动检测产品缺陷来转变质量控制流程。
谷歌构建了视觉检测 AI 来满足质量、测试、制造和工艺工程师的需求,他们是各自领域的专家,但不是 AI 专家。通过将易用性与对优先用例的关注相结合,与通用机器学习 (ML) 方法相比,有着显着的优势:
- 在本地自主运行:制造商可以在网络边缘或本地运行检查模型。检查可以在 Google Cloud 中运行,也可以在客户的工厂车间完全自主运行。
- 部署时间短:客户可以在数周内完成部署,而不像传统机器学习 (ML) 解决方案需要部署数月。专为流程和质量工程师打造,无需计算机视觉或机器学习经验。交互式用户界面可指导用户完成所有步骤。
- 卓越的计算机视觉和 AI 技术:根据几家 Google Cloud 客户的基准测试,在生产试验中,与通用机器学习方法相比,视觉检测 AI 客户的准确度提高了 10 倍。它可以通过支持 Forrester 评为行业领先的超高分辨率图像(高达 1 亿像素)和计算机视觉技术来检测最微小的缺陷 。
- 轻松快速入门:基于多个 Google Cloud 客户运行的试点,视觉检测 AI 可以构建准确的模型,其人工标记图像比通用 ML 平台少 300 倍。传统解决方案需要数千张昂贵的缺陷和非缺陷模式标记图像。
- 超越异常检测:与使用简单异常检测的竞争解决方案不同,视觉检测 AI 的深度学习允许客户训练模型来检测、分类和精确定位单个图像中的多种缺陷类型。这允许自动触发生产线上的后续任务,无需人工干预。
- 高度可扩展的部署:制造商可以灵活地部署和管理 ML 模型的生命周期,跨生产线和工厂扩展解决方案。
行业用例
目前,该视觉检测 AI(Visual Inspection AI)已经在以下行业和使用场景中使用了,如具体的质量控制问题:
- 汽车制造:涂装车间表面检查、车身车间焊缝检查、冲压车间检查(划痕、凹痕、裂纹、染色)、铸造发动机缸体检查(裂纹、变形、异常)
- 半导体制造:晶圆级异常及缺陷定位、芯片裂纹检测、预置检测、SoC封装检测、电路板组装检测
- 电子制造:印刷电路板(PCB)组件(螺丝、弹簧、泡棉、连接器、屏蔽等)缺陷或缺失、PCB焊接和粘合(焊料不足、冰柱、移位、超锡等)、产品表面检查(胶水溢出、网眼变形、划痕、气泡等)
- 通用制造:包装和标签检验、织物检验(网眼、撕裂、纱线)、金属和塑料焊缝检验、表面检验
富士康的子公司 FIH Mobile 是手机和无线通信制造和服务的全球领导者,并在 今年早些时候评估了视觉检测 AI(Visual Inspection AI)。FIH Mobile 高级副经理 Sabcat Shih 表示:“与谷歌云合作将创新的机器学习和计算机视觉技术引入我们的质量流程,真是太棒了。”“来自 FIH Mobile 的工程师信任 Google Cloud,我们正在通过与谷歌云的团队合作实现可观的产品改进。我们迫不及待地在我们广泛的 PCB 制造业务中进一步推出装配检测解决方案。”
文章参考:Improve manufacturing quality control with Visual Inspection AI | Google Cloud Blog