大二下:概率论与数理统计复习 1.随机事件之基础概念

大二下:概率论与数理统计复习 导航页:https://blog.csdn.net/COCO56/article/details/100152856

1. 随机事件与样本空间的概念

在这里插入图片描述

2. 事件的关系

在这里插入图片描述

3. 事件的运算律

  • 交 换 律 : A ∪ B = B ∪ A ;   A ∩ B = B ∩ A 交换律:A\cup B=B\cup A;\ A\cap B=B\cap A AB=BA; AB=BA
  • 结 合 律 : A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C ;   A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C . 结合律:A\cup (B\cup C)=(A\cup B)\cup C;\ A\cap (B\cap C)=(A\cap B)\cap C. A(BC)=(AB)C; A(BC)=(AB)C.
  • 分 配 律 : A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) ;   A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) . 分配律:A\cup (B\cap C)=(A\cup B)\cap (A\cup C); \ A\cap (B\cup C)=(A\cap B)\cup (A\cap C). A(BC)=(AB)(AC); A(BC)=(AB)(AC).
  • 德 摩 根 律 : A ∪ B ‾ = A ‾ ∩ B ‾ ,   A ∩ B ‾ = A ‾ ∪ B ‾ ; A ∪ B ∪ C ‾ = A ‾ ∩ B ‾ ∩ C ‾ ,   A ∩ B ∩ C ‾ = A ‾ ∪ B ‾ ∪ C ‾ 德摩根律:\overline{A\cup B}=\overline{A}\cap\overline{B}, \ \overline{A\cap B}=\overline{A}\cup \overline{B}; \\ \overline{A\cup B\cup C}=\overline{A}\cap \overline{B}\cap \overline{C}, \ \overline{A\cap B\cap C}=\overline{A}\cup \overline{B}\cup \overline{C} AB=AB, AB=AB;ABC=ABC, ABC=ABC
    并的补等于补的交,交的补等于补的并。
  • 此 外 , 还 应 注 意 到 : A − B = A B ‾ , A = ( A B ) ∪ ( A B ‾ ) 此外,还应注意到:A-B=A\overline{B}, A=(AB)\cup(A\overline{B}) AB=AB,A=(AB)(AB)

4. 概率的概念和性质

在这里插入图片描述

5. 古典概型

如果试验E的结果只有有限种,且每种结果发生的可能性相同,则称这样的试验模型为等可能概率模型或古典概率模型,简称等可能模型或古典概率
古典概率的事件A概率为:
P ( A ) = A 中 包 含 样 本 点 数 k 样 本 点 总 数 n = k n P(A)=\frac{A中包含样本点数k}{样本点总数n}=\frac{k}{n} P(A)=nAk=nk
在这里插入图片描述

6. 条件概率

条件概率P(B|A)表示已知事件A发生的情况下事件B发生的概率:
P ( B ∣ A ) = P ( A B ) P ( A ) P ( B ‾ ∣ A ) = 1 − P ( B ∣ A ) = 1 − P ( A B ) P ( A ) \begin{aligned} P(B|A)&=\frac{P(AB)}{P(A)}\\ P(\overline{B}|A)&=1-P(B|A)=1-\frac{P(AB)}{P(A)} \end{aligned} P(BA)P(BA)=P(A)P(AB)=1P(BA)=1P(A)P(AB)

7. 乘法定理

P ( B ∣ A ) = P ( A B ) P ( A ) ⇒ P ( A B ) = P ( B ∣ A ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} \Rightarrow P(AB)=P(B|A)P(A) P(BA)=P(A)P(AB)P(AB)=P(BA)P(A)

8. 全概率公式

P ( A ) = ∑ i = 1 n P ( A B i ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A)=\sum_{i=1}^{n}P(AB_i)=\sum_{i=1}^{n}P(A|B_i)P(B_i) P(A)=i=1nP(ABi)=i=1nP(ABi)P(Bi)

9. 贝叶斯公式

P ( B i ∣ A ) = P ( B i A ) P ( A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) P(B_i|A)=\frac{P(B_iA)}{P(A)}=\frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n}P(A|B_j)P(B_j)} P(BiA)=P(A)P(BiA)=j=1nP(ABj)P(Bj)P(ABi)P(Bi)
注:如果完备事件组只包含两部分,也就是B和 B ‾ \overline{B} B,这样公式变为:

  • 全概率公式
    P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(A)=P(A|B)P(B)+P(A|\overline{B})P(\overline{B}) P(A)=P(AB)P(B)+P(AB)P(B)
  • 贝叶斯公式
    P ( B ∣ A ) = P ( A B ) P ( A ) = P ( A ∣ B ) P ( B ) P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(B|A)=\frac{P(AB)}{P(A)}=\frac{P(A|B)P(B)}{P(A|B)P(B)+P(A|\overline{B})P(\overline{B})} P(BA)=P(A)P(AB)=P(AB)P(B)+P(AB)P(B)P(AB)P(B)

10. 事件独立性

设A和B是两个事件,若P(B)>0,则可定义条件概率P(A|B)。它表示在事件B发生的条件下,事件A发生的概率;而P(A)表示不管事件B发生与否,事件A发生的概率。若P(A|B)=P(A),则表明事件B的发生并不影响事件A发生的概率,比如掷骰子实验,第一次的结果并不影响第二次的结果。这时称事件A与B相互独立,并且乘法公式变成了:
P ( A B ) = P ( A ∣ B ) P ( B ) = P ( A ) P ( B ) P(AB)=P(A|B)P(B)=P(A)P(B) P(AB)=P(AB)P(B)=P(A)P(B)
1.
A 和 B 相 对 独 立 ⇔ P ( A B ) = P ( A ) P ( B ) A 和 B 同 时 发 生 的 概 率 = A 发 生 的 概 率 × B 发 生 的 概 率 ⇔ P ( B ) = P ( B ∣ A ) ( P ( A ) &gt; 0 ) B 发 生 的 概 率 = A 发 生 的 条 件 下 B 发 生 的 概 率 ⇔ P ( B ∣ A ) = P ( B ∣ A ‾ ) ( 0 &lt; P ( A ) &lt; 1 ) A 发 生 的 条 件 下 B 发 生 的 概 率 = A 不 发 生 的 条 件 下 B 发 生 的 概 率 ⇔ P ( A ∣ B ) = P ( A ∣ B ‾ ) ( 0 &lt; P ( B ) &lt; 1 ) B 发 生 的 条 件 下 A 发 生 的 概 率 = B 不 发 生 的 条 件 下 A 发 生 的 概 率 \begin{aligned} A和B相对独立&amp;\Leftrightarrow \bf{P(AB)=P(A)P(B)} \\ &amp;\qquad A和B同时发生的概率=A发生的概率\times B发生的概率\\ &amp;\Leftrightarrow P(B)=P(B|A)\qquad (P(A)&gt;0)\\ &amp;\qquad B发生的概率=A发生的条件下B发生的概率\\ &amp;\Leftrightarrow P(B|A)=P(B|\overline{A})\qquad (0&lt;P(A)&lt;1)\\ &amp;\qquad A发生的条件下B发生的概率=A不发生的条件下B发生的概率 \\ &amp;\Leftrightarrow P(A|B)=P(A|\overline{B})\qquad (0&lt;P(B)&lt;1) \\ &amp;\qquad B发生的条件下A发生的概率=B不发生的条件下A发生的概率 \end{aligned} ABP(AB)=P(A)P(B)AB=A×BP(B)=P(BA)(P(A)>0)B=ABP(BA)=P(BA)(0<P(A)<1)AB=ABP(AB)=P(AB)(0<P(B)<1)BA=BA
2.
A 和 B 相 互 独 立 , 则 A 和 B ‾ , A ‾ 和 B , A ‾ 和 B ‾ 也 相 互 独 立 ; A和B相互独立,则A和\overline{B},\overline{A}和B,\overline{A}和\overline{B}也相互独立; ABABABAB
3. 当两个事件的概率都大于0小于1时,也就是P(A)>0,P(B)>0,A和B相互独立与A和B互不相容不能同时成立,也就是独立则不互斥,互斥则不独立,因为:
A 和 B 互 不 相 容 ⇔ A B = ∅ ⇔ P ( A B ) = 0 A和B互不相容\Leftrightarrow AB=\emptyset \Leftrightarrow P(AB)=0 ABAB=P(AB)=0
这与P(AB)=P(A)P(B)>0是矛盾的。
4. 三个事件A,B,C相互独立,则满足:
P ( A B ) = P ( A ) P ( B ) , P ( A C ) = P ( A ) P ( C ) , P ( B C ) = P ( B ) P ( C ) , P ( A B C ) = P ( A ) P ( B ) P ( C ) 若 只 满 足 前 三 个 式 子 , 则 叫 做 两 两 相 互 独 立 。 \begin{aligned} &amp;P(AB)=P(A)P(B), \\ &amp;P(AC)=P(A)P(C), \\ &amp;P(BC)=P(B)P(C), \\ &amp;P(ABC)=P(A)P(B)P(C) \\ \\ &amp;若只满足前三个式子,则叫做两两相互独立。 \end{aligned} P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),P(ABC)=P(A)P(B)P(C)
在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

COCO56(徐可可)

建议微信红包:xucoco56

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值